Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A stroke can lead to reduced mobility affecting skeletal muscle mass and fatty infiltration which could lead to systemic insulin resistance, but this has not been examined and the mechanisms are currently unknown. The objective was to compare the effects of in vivo insulin on skeletal muscle glycogen synthase (GS) activity in paretic (P) and nonparetic (NP) skeletal muscle in chronic stroke, and to compare to nonstroke controls. Participants were mild to moderately disabled adults with chronic stroke ( = 30, 60 ± 8 years) and sedentary controls ( = 35, 62 ± 8 years). Insulin sensitivity (M) and bilateral GS activity were determined after an overnight fast and during a hyperinsulinemic-euglycemic clamp. Stroke subjects had lower aerobic capacity than controls, but M was not significantly different. Insulin-stimulated activities of GS (independent, total, fractional), as well as absolute differences (insulin minus basal) and the percent change (insulin minus basal, relative to basal) in GS activities, were all significantly lower in P versus NP muscle. Basal GS fractional activity was 3-fold higher, and the increase in GS fractional activity during the clamp was 2-fold higher in control versus P and NP muscle. Visceral fat and intermuscular fat were associated with lower M. The effect of in vivo insulin to increase GS fractional activity was associated with M in control and P muscle. A reduction in insulin action on GS in paretic muscle likely contributes to skeletal muscle-specific insulin resistance in chronic stroke.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823711 | PMC |
http://dx.doi.org/10.3390/brainsci11010020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!