Electroactive polymers with high dielectric constants and low moduli can offer fast responses and large electromechanical strain under a relatively low electric field with regard to theoretical driving forces of electrostriction and electrostatic force. However, the conventional electroactive polymers, including silicone rubbers and acrylic polymers, have shown low dielectric constants (ca. < 4) because of their intrinsic limitation, although they have lower moduli (ca. < 1 MPa) than inorganics. To this end, we proposed the high dielectric PVDF terpolymer blends (PVTC-PTM) including poly(vinylidene fluoride-trifluoroethylene-chlorofluoro-ethylene) (P(VDF-TrFE-CFE), PVTC) as a matrix and micelle structured poly(3-hexylthiophene)--poly(methyl methacrylate) (P3HT--PMMA, PTM) as a conducting filler. The dielectric constant of PVTC-PTM dramatically increased up to 116.8 at 100 Hz despite adding only 2 wt% of the polymer-type filler (PTM). The compatibility and crystalline properties of the PVTC-PTM blends were examined by microscopic, thermal, and X-ray studies. The PVTC-PTM showed more compatible blends than those of the P3HT homopolymer filler (PT) and led to higher crystallinity and smaller crystal grain size relative to those of neat PVTC and PVTC with the PT filler (PVTC-PT). Those by the PVTC-PTM blends can beneficially affect the high-performance electromechanical properties compared to those by the neat PVTC and the PVTC-PT blend. The electromechanical strain of the PVTC-PTM with 2 wt% PTM (PVTC-PTM2) showed ca. 2-fold enhancement (0.44% transverse strain at 30 V μm) relative to that of PVTC. We found that the more significant electromechanical performance of the PVTC-PTM blend than the PVTC was predominantly due to the electrostrictive force rather than electrostatic force. We believe that the acquired PVTC-PTM blends are great candidates to achieve the high-performance electromechanical strain and take all benefits derived from the all-organic system, including high electrical breakdown strength, processibility, dielectrics, and large strain, which are largely different from the organic-inorganic hybrid nanocomposite systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822181PMC
http://dx.doi.org/10.3390/nano11010006DOI Listing

Publication Analysis

Top Keywords

high dielectric
12
electromechanical strain
12
pvtc-ptm blends
12
pvdf terpolymer
8
terpolymer blends
8
electromechanical properties
8
electroactive polymers
8
dielectric constants
8
electrostatic force
8
pvtc-ptm
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!