-bark beetles are natural agents contributing to vital processes in coniferous forests, such as regeneration, succession, and material recycling, as they colonize and kill damaged, stressed, or old pine trees. These beetles spend most of their life cycle under stem and roots bark where they breed, develop, and feed on phloem. This tissue is rich in essential nutrients and complex molecules such as starch, cellulose, hemicellulose, and lignin, which apparently are not available for these beetles. We evaluated the digestive capacity of to hydrolyze starch. Our aim was to identify α-amylases and characterize them both molecularly and biochemically. The findings showed that . has an α-amylase gene () with a single isoform, and ORF of 1452 bp encoding a 483-amino acid protein (53.15 kDa) with a predicted signal peptide of 16 amino acids. AmyDr has a mutation in the chlorine-binding site, present in other phytophagous insects and in a marine bacterium. Docking analysis showed that AmyDr presents a higher binding affinity to amylopectin compared to amylose, and an affinity binding equally stable to calcium, chlorine, and nitrate ions. AmyDr native protein showed amylolytic activity in the head-pronotum and gut, and its recombinant protein, a polypeptide of ~53 kDa, showed conformational stability, and its activity is maintained both in the presence and absence of chlorine and nitrate ions. The gene showed a differential expression significantly higher in the gut than the head-pronotum, indicating that starch hydrolysis occurs mainly in the midgut. An overview of the gene expression suggests that the amylolytic activity is regulated through the developmental stages of this bark beetle and associated with starch availability in the host tree.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7792934 | PMC |
http://dx.doi.org/10.3390/ijms22010036 | DOI Listing |
Bull Math Biol
December 2024
Department of Biology, University of Victoria, Victoria, BC, Canada.
Insects, especially forest pests, are frequently characterized by eruptive dynamics. These types of species can stay at low, endemic population densities for extended periods of time before erupting in large-scale outbreaks. We here present a mechanistic model of these dynamics for mountain pine beetle.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China. Electronic address:
Three Tomicus bark beetles (T. yunnanensis, T. brevipilosus and T.
View Article and Find Full Text PDFPest Manag Sci
December 2024
Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA.
Background: Acanthacoccus lagerstroemiae (crape myrtle bark scale, CMBS) is an exotic scale insect that feeds on the sap of crape myrtle trees. Heavy infestations of CMBS reduce flowering and honeydew promotes sooty mold growth on the leaves and branches, reducing the aesthetic value of crape myrtle trees in urban landscapes. Lady beetles (Coleoptera: Coccinellidae) are generalist predators that feed on CMBS.
View Article and Find Full Text PDFGenome Biol Evol
December 2024
Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland.
R Soc Open Sci
December 2024
Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA.
also known as southern pine beetle (SPB), is the most damaging insect forest pest in the southeastern United States. Genomic data are important to provide information on pest biology and to identify molecular targets to develop improved pest management approaches. Here, we produced a chromosome-level genome assembly of SPB using long-read sequencing data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!