Stem Cells and Extrusion 3D Printing for Hyaline Cartilage Engineering.

Cells

UMR 7365 CNRS-UL, IMoPA (Ingénierie Moléculaire et Physiopathologie Articulaire), Biopôle de l'Université de Lorraine, Campus Brabois-Santé, 9, Avenue de la Forêt de Haye, BP20199, 54505 Vandœuvre-Lès-Nancy, France.

Published: December 2020

Hyaline cartilage is deficient in self-healing properties. The early treatment of focal cartilage lesions is a public health challenge to prevent long-term degradation and the occurrence of osteoarthritis. Cartilage tissue engineering represents a promising alternative to the current insufficient surgical solutions. 3D printing is a thriving technology and offers new possibilities for personalized regenerative medicine. Extrusion-based processes permit the deposition of cell-seeded bioinks, in a layer-by-layer manner, allowing mimicry of the native zonal organization of hyaline cartilage. Mesenchymal stem cells (MSCs) are a promising cell source for cartilage tissue engineering. Originally isolated from bone marrow, they can now be derived from many different cell sources (e.g., synovium, dental pulp, Wharton's jelly). Their proliferation and differentiation potential are well characterized, and they possess good chondrogenic potential, making them appropriate candidates for cartilage reconstruction. This review summarizes the different sources, origins, and densities of MSCs used in extrusion-based bioprinting (EBB) processes, as alternatives to chondrocytes. The different bioink constituents and their advantages for producing substitutes mimicking healthy hyaline cartilage is also discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7821921PMC
http://dx.doi.org/10.3390/cells10010002DOI Listing

Publication Analysis

Top Keywords

hyaline cartilage
16
stem cells
8
cartilage
8
cartilage tissue
8
tissue engineering
8
cells extrusion
4
extrusion printing
4
hyaline
4
printing hyaline
4
cartilage engineering
4

Similar Publications

Background: The complement system is locally activated after joint injuries and leads to the deposition of the terminal complement complex (TCC). Sublytic TCC deposition is associated with phenotypical alterations of human articular chondrocytes (hAC) and enhanced release of inflammatory cytokines. Chronic inflammation is a known driver of chondrosenescence in osteoarthritis (OA).

View Article and Find Full Text PDF

Background: Preventing worsening osteoarthritis (OA) in persons with early OA is a major treatment goal. We evaluated if different early OA definitions yielded enough cases of worsening OA within 2-5 years to make trial testing treatments feasible.

Methods: We assessed different definitions of early OA using data from Multicenter Osteoarthritis (MOST) Study participants who were followed up longitudinally.

View Article and Find Full Text PDF

Background: Cartilage defects in the knee joint are areas of damage and wear to the cartilage that normally covers and protects the ends of bones. These defects occur due to sudden injuries, such as trauma or sports accidents, or due to chronic conditions, such as osteoarthritis. Cartilage acts as a shock absorber (cushion absorber), reducing the impact of mechanical stress on the joints, which helps prevent bone damage during movement.

View Article and Find Full Text PDF

Reduced weight-bearing during spaceflight has been associated with musculoskeletal degradation that risks astronaut health and performance in transit and upon reaching deep space destinations. Previous rodent experiments aboard the international space station (ISS) have identified that the spaceflight-induced molecular arthritic phenotype was characterized with an increase in oxidative stress. This study evaluated if treatment with a superoxide dismutase (SOD) mimetic on orbit could prevent spaceflight-induced damage to the knee and hip articular cartilage, and the menisci in rodents.

View Article and Find Full Text PDF

Bio-inspired mineralized collagen scaffolds with precisely controlled gradients for the treatment of severe osteoarthritis in a male rabbit model.

Int J Biol Macromol

January 2025

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China. Electronic address:

Osteoarthritis affects approximately 500 million individuals globally, with severe cases often leading to osteochondral defects. Biomimetic collagen-hydroxyapatite scaffolds have been investigated for the treatment of osteochondral defects. However, achieving precise mimicry of the intricate composition, gradient nanostructure, and biological function of native tissue remains a formidable challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!