The present study focuses on fabrication of magnetic activated carbon (M-AC) using tire waste and its potential investigation for adsorption of Cr (VI) from wastewater. The composite material (M-AC) was synthesized by pyrolysis followed by in situ magnetization method, and characterized by FTIR, FESEM, EDX, and XRD analysis. The maximum adsorption of Cr (VI) ion over composite adsorbent was found (~99.5%) to occur at pH 2, sample volume 10 mL, adsorbent dose 100 mg, contact time 30 min. The adsorption process was endothermic, feasible, spontaneous, and was found to follow pseudo second order of the reaction. The Cr ion could be completely desorbed (~99.3%) from the composite adsorbent by using 20 mL of 2 M NaOH solution. The composite adsorbent was regenerated by continuous adsorption and desorption for 5 consecutive cycles by using 10 mL 0.1 M HCl solution. M-AC also performed well in case of tannery wastewater by removing about 97% of Cr (VI).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7796004 | PMC |
http://dx.doi.org/10.3390/ma14010034 | DOI Listing |
Heliyon
January 2025
Nuclear Chemistry Division, Department of Chemistry, Atomic Energy Commission, P. O. Box: 9061, Damascus, Syrian Arab Republic.
Molecular scale information is needed to understand ions coordination to mineral surfaces and consequently to accelerate the design of improved adsorbents. The present work reports on the use of two-dimensional correlation Fourier Transform infra-red spectroscopy (2D-COS-FTIR) and hetero 2D-COS-FTIR- X-ray diffraction (XRD) to probe the mechanism of Cr(VI) removal from aqueous solutions by activated carbon (AC) and its composite with PWO (AC-composite). The adsorption data at an initial Cr(VI) concentration of 320 mg L (320 ppm) revealed maximum adsorption capacities of 65 mg g for AC and 73 mg g for AC-composite, corresponding to removal percentages of 83 % and 94 %, respectively.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Soil Science, Faculty of Agriculture, University of Jiroft, Jiroft, 7867161167, Iran.
This study focuses on developing biochar-based adsorbents with high adsorption capacity and rapid adsorption rates for removing boron from aqueous solutions. Hydroxy-enriched biochar composites (BC (carboxylated biochar), BC-PDA (polydopamine loaded biochar), MBC-PDA (polydopamine loaded magnetic biochar), BC-AlOOH (AlOOH loaded biochar), and BC-ZnCl (biochar modified by ZnCl)) were synthesized specifically for boron adsorption to utilize the superior adsorption capacity of biochar. All adsorbents were synthesized using straightforward experimental techniques from date palm cellulosic fibers as promising lignocellulose feedstock and subjected to various characterization methods.
View Article and Find Full Text PDFMethodsX
June 2025
Department of Biology, Faculty of Mathematics and Natural Sciences, Mulawarman University, Samarinda, 75242, Indonesia.
The use of eggshells as a primary source for developing value-added materials has garnered significant attention in recent years due to their effectiveness as an excellent adsorbent and support. In this study, the Solid-State Dispersion (SSD) method was utilized to prepare composite photocatalysts of eggshells (ES)/TiO₂ in various ratios. TiO₂ and eggshell photocatalysts were also employed as control samples.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Huzhou Key Laboratory of Medical and Environmental Application Technologies, School of Life Sciences, Huzhou University, Zhejiang 313000, PR China; Zhejiang-French Digital Monitoring Laboratory for Aquatic Resources and Environment, Huzhou University, Huzhou 313000, PR China. Electronic address:
Mercury (II) ion (Hg) as highly toxic heavy metal may be accumulated in aquatic ecosystems and animals species so as to enter human body to conduct health harm. To ensure the safety of fishes food, hence, it is of great interest to evaluate the Hg levels in different kinds of fishes as well as Hg removal in aquaculture tailwater. In this article, a selective colormetric detection and efficient removal strategy has been developed for Hg ions by the controlled supermolecular self-assembly of melamine (MA)-platinum (Pt) composites onto mesoporous FeO carriers.
View Article and Find Full Text PDFChem Rev
January 2025
Department of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States.
The reactions critical for the energy transition center on the chemistry of hydrogen, oxygen, carbon, and the heterogeneous catalyst surfaces that make up electrochemical energy conversion systems. Together, the surface-adsorbate interactions constitute the electrochemical interphase and define reaction kinetics of many clean energy technologies. Practical devices introduce high levels of complexity where surface roughness, structure, composition, and morphology combine with electrolyte, pH, diffusion, and system level limitations to challenge our ability to deconvolute underlying phenomena.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!