Chemokine-receptor interactions play multiple roles in cancer progression. It was reported that the overexpression of X-C motif chemokine receptor 1 (XCR1), a specific receptor for chemokine X-C motif chemokine ligand 1 (XCL1), stimulates the migration of MDA-MB-231 triple-negative breast cancer cells. However, the exact mechanisms of this process remain to be elucidated. Our study found that XCL1 treatment markedly enhanced MDA-MB-231 cell migration. Additionally, XCL1 treatment enhanced epithelial-mesenchymal transition (EMT) of MDA-MB-231 cells via E-cadherin downregulation and upregulation of N-cadherin and vimentin as well as increases in β-catenin nucleus translocation. Furthermore, XCL1 enhanced the expression of hypoxia-inducible factor-1α (HIF-1α) and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. Notably, the effects of XCL1 on cell migration and intracellular signaling were negated by knockdown of XCR1 using siRNA, confirming XCR1-mediated actions. Treating MDA-MB-231 cells with U0126, a specific mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, blocked XCL1-induced HIF-1α accumulation and cell migration. The effect of XCL1 on cell migration was also evaluated in ER/HER2 SK-BR-3 cells. XCL1 also promoted cell migration, EMT induction, HIF-1α accumulation, and ERK phosphorylation in SK-BR-3 cells. While XCL1 did not exhibit any significant impact on the matrix metalloproteinase (MMP)-2 and -9 expressions in MDA-MB-231 cells, it increased the expression of these enzymes in SK-BR-3 cells. Collectively, our results demonstrate that activation of the ERK/HIF-1α/EMT pathway is involved in the XCL1-induced migration of both MDA-MB-231 and SK-BR-3 breast cancer cells. Based on our findings, the XCL1-XCR1 interaction and its associated signaling molecules may serve as specific targets for the prevention of breast cancer cell migration and metastasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7796296 | PMC |
http://dx.doi.org/10.3390/ijms22010089 | DOI Listing |
Development
January 2025
School of Science, Technische Universität Dresden, 01062 Dresden, Germany.
The elongation of tissues and organs is important for proper morphogenesis in animal development. In Drosophila ovaries, the elongation of egg chambers involves aligned Collagen IV fiber-like structures, a gradient of extracellular matrix stiffness and actin-based protrusion-driven collective cell migration, leading to the rotation of the egg chamber. Egg chamber elongation and rotation depend on the atypical cadherin Fat2.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Institute of Physics and Materials Science, Department of Natural Sciences and Sustainable Ressources, BOKU University, Peter Jordan-Straß 82, 1190 Vienna, Austria.
Spider silk (SPSI) is a promising candidate for use as a filler material in nerve guidance conduits (NGCs), facilitating peripheral nerve regeneration by providing a scaffold for Schwann cells (SCs) and axonal growth. However, the specific properties of SPSI that contribute to its regenerative success remain unclear. In this study, the egg sac silk of is investigated, which contains two distinct fiber types: tubuliform (TU) and major ampullate (MA) silk.
View Article and Find Full Text PDFLangmuir
January 2025
CNNFM Lab, School of Mechanical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563 Tehran, Iran.
This study investigates the impact of cell dynamics on mixing efficiency within a microfluidic droplet, emphasizing the relationship between cell motion, deformability, and resultant asymmetry in velocity and concentration fields. Simulations were conducted for droplets containing encapsulated cells at varying Peclet numbers ( = 100-800) and coupling constants ( = 0.0025, 0.
View Article and Find Full Text PDFPLoS One
January 2025
Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, P. R. China.
FBXW7 is a tumor suppressor gene that regulates metabolism and is associated with the onset and progression of colorectal cancer (CRC)), however, the precise mechanism whereby FBXW7 participates in the metabolic reprogramming of CRC remains unclear. Here, the research aims to reveal the association between the expression of FBXW7 and clinical variables and to investigate the molecular mechanism by which FBXW7 plays a critical role in the development of CRC. The clinical importance of FBXW7 in CRC was determined by immunohistochemistry.
View Article and Find Full Text PDFPLoS One
January 2025
Departments of Microbiology, College of Medicine, Ewha Womans University, Seoul, Korea.
Mast cells, immune sentinels that respond to various stimuli in barrier organs, provide defense by expressing pattern recognition receptors, such as Toll-like receptors (TLRs). They may affect inflammatory responses and wound healing. Here, we investigated the effect of TLR2/6-stimulated mast cells on wound healing in keratinocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!