This work focuses on the effect of curdlan (CL) on dynamic viscoelastic property, thermal reversible property, viscosity, and the fluid types of hydroxypropyl methylcellulose (HPMC) at different temperatures. Compared to the blends at 25 °C, the blends had a smaller linear viscoelastic region (LVR), a higher gel strength, and larger storage modulus (G') and loss modulus (G") values at 82 °C. G', G", gel strength, and viscosity increased with the increase of CL. Repeated temperature sweep led to increased G' and G" of HPMC/CL blends. For HC6 and HC8, the gel formation temperature of the repeated temperature sweep was significantly lower than that of the first sweep. The samples at 82 °C, except for the sample with 8% CL, were all yield-shear thinning fluids, and the samples at 40 °C were shear thinning fluids. The creation of HPMC/CL and its rheological research might provide some methodological references for the study of other thermal-thermal gel blends.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7824296 | PMC |
http://dx.doi.org/10.3390/foods10010034 | DOI Listing |
Polymers (Basel)
December 2024
Food Packaging and Shelf Life Research Group, Food Engineering Department, Universidad de Cartagena, Cartagena 130015, Colombia.
Electrolyzed acidic water (EAW) contains hypochlorous acid as its active compound, which is a potent antimicrobial. It was encapsulated in polymeric coatings and applied to the surface of eggs. The antimicrobial activity and the ability to extend the shelf life of eggs at ambient temperature for 45 days were evaluated, by physical, microbiological, and sensory analyses.
View Article and Find Full Text PDFRetina
October 2024
Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
Purpose: The research investigates the efficacy of hydroxypropyl methylcellulose (HPMC) treatment in facilitating the development of compact water droplets on the rear surface of synthetic lenses with capsule imperfections during the process of fluid-air exchange.
Method: This study examined four patients with intraocular lens (IOL) implants and posterior capsule defects who experienced the formation of dense water droplets on the posterior surface following fluid-air exchange. When this occurrence obstructs fundus visualization during surgery, it is recommended to suspend the surgical procedure.
ACS Appl Mater Interfaces
January 2025
Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
This study explores improving proton exchange membrane water electrolysis (PEMWE) by achieving both cost-effectiveness and enhanced efficiency through the replacement of the costly and environmentally challenging Nafion ionomer with hydroxypropyl methylcellulose (HPMC) as an anode binder. HPMC, an eco-friendly and cost-effective material, was cross-linked with citric acid to form a durable hydrogel that enhances water and proton transport within the catalyst layer. Using the cross-linked HPMC binder allowed a reduction in cost to 1/54 compared to Nafion ionomer, while the performance of the cross-linked HPMC electrodes remained comparable to Nafion electrodes.
View Article and Find Full Text PDFPharmaceutics
November 2024
Faculty of Pharmaceutical Science, UNESP-São Paulo State University, Rodovia Araraquara-Jaú, Km 01, Araraquara 14801-902, Brazil.
: This study evaluated how the relative proportion of chitosan (CS) to the polyanions alginate (ALG) and hydroxypropyl-methylcellulose phthalate (HP) affects the colloidal properties of mesalazine (MSZ) nanosuspensions as a strategy to produce particles with specific characteristics. : Nanosuspensions were prepared using a bottom-up approach based on acid-base reactions and were modified with CS in a binary mixture with ALG or a ternary mixture with ALG and HP. The particle size, polydispersity index (PDI), zeta potential, morphology, and drug association efficiency were analyzed.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
The effects of 1 % xanthan gum (XG) and hydroxypropyl methylcellulose (HPMC) on the physicochemical and structural properties of triticale gluten (TG) during fermentation were investigated. Rheological analysis revealed that the addition of XG or HPMC decreased G' and G″ values, while increasing tanδ and recovery strain of triticale gluten during fermentation. Thermal gravimetric analysis demonstrated that triticale gluten added with XG after fermentation exhibited the highest residual mass, showing a 9.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!