Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, we employed Pectin (PC) as a matrix that is hybridized with three different nucleobase (NB) units (cytosine, thymine, uracil) to generate pectin-nucleobase(PC-NB) biocomposite films stabilized through bio-multiple hydrogen bonds (BMHBs) as drug carrier for anticancer 5-Fluorouracil (5-FU). Prepared biocomposite films were characterized by Fourier Transform Infra-red Spectroscopy (FTIR), X-ray Diffraction (XRD), Thermogravimmetry Analysis (TGA) and Scanning Electron Microscope (SEM). Mechanical and sorption properties were also evaluated. In vitro drug release performed in both acidic pH 1.2 (stomach pH) and alkaline pH 7.4 (intestinal pH) showed that incorporation of nucleobases into pectin significantly restricted release rate of 5-FU particularly under acidic condition (pH 1.2). Hemolysis assays demonstrated that PC-NB-5-FU biocomposite film drug carriers were hemocompatible. Confocal microscope analysis indicates facilitated cellular uptake of PC-NB-5-FU film in HT-29 colon cancer cell line, which in turn result in a higher potential of apoptosis. Confocal imaging of fluorescent live/dead cell indicators and MTT assay outcomes, both demonstrated significant decreases in cellular viability of PC-NB-5-FU biocomposite films. Collectively, our findings indicate that this PC-NB-5-FU biocomposite films can be conferred as a proficient formulation for targeted delivery of colon cancer drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2020.104266 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!