Kisspeptin (Kp), a multifunctional neuropeptide critical for initiating puberty and regulating ovulation, was reported to be expressed in mammalian ovaries. Fibronectin (FN), a major secretory product of granulosa cells, provided the extracellular environment for the cumulus cells during maturation. In the current study, we aimed to investigate the potential interplay between FN and Kp in bovine preantral follicles in the context of follicular development and quality. The results showed that Kp significantly reduced the follicular diameters after 14 days in culture, and this was prevented by the addition of FN. Follicles treated with Kp in the presence of FN showed lower levels of apoptotic cells compared to the Kp-treated group. The immunofluorescence analysis showed high levels of cyclooxygenase-2 (COX2), nuclear factor kappa B (NF-κB), and caspase 3, and low levels of sirtuin 1 (Sirt1) and Poly ADP-Ribose Polymerase 1 (PARP1) in the Kp-treated group compared to the control and FN-Kp co-treated groups. The protein expression levels of phosphoinositide 3 kinase (PI3K) increased significantly in the FN and FN-Kp combination treatment groups. Finally, we examined the signal pathway affecting the follicular development after Kp treatment. We detected a significant decrease in the mRNA levels of B-cell lymphoma 2 (BCL2), Sirt1, and PI3K, but the mRNA levels of NF-κB, Caspase3, COX2, P21, and P53 were significantly higher than in the control. Taken together, our results showed the importance of FN for preantral follicle developmental, and, for the first time, we reported that FN could neutralize the deleterious consequences of Kp, suggesting a potential role in the regulation of PI3K/Sirt1 signaling in bovine preantral follicle development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.theriogenology.2020.12.017 | DOI Listing |
J Reprod Dev
December 2024
Laboratory of Veterinary Theriogenology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan.
Due to the strong demand for embryo production from young and genotyped superior animals using ovum-pick up (OPU) combined with in vitro fertilization (IVF), the number of in vitro-produced embryos has exceeded that of in vivo-derived embryos globally since 2016. One of the merits of OPU-IVF is that the administration of follicle-stimulating hormone (FSH) is not essential, while FSH treatment prior to OPU promotes oocyte developmental competence. Thus, investigations are needed to optimize OPU-IVF protocols with and without FSH.
View Article and Find Full Text PDFVet Sci
November 2024
Laboratory of Animal Reproduction, University of Londrina (UEL), Londrina 86057-970, Brazil.
Ovarian tissue cryopreservation has been widely investigated for preserving female fertility. In the present study, we aimed to compare the effects of three concentrations (1, 1.5, and 3 M) of dimethylsulfoxide (DMSO) on the vitrification of ovarian tissue.
View Article and Find Full Text PDFF S Sci
May 2024
Department of Animal Science, University of California Davis, Davis, California. Electronic address:
J Assist Reprod Genet
December 2024
Reproductive and Developmental Biology Laboratory (ReDBioLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy.
Female fertility preservation via complete in vitro folliculogenesis is still chimerical. Due to many factors affecting the efficiency of isolation and culture of preantral follicles, the improvement of techniques geared to fertility preservation in higher mammals seems to be at an impasse. We need an objective view of the current stand to understand how to progress further.
View Article and Find Full Text PDFAnim Reprod Sci
November 2024
Federal University of Vale do São Francisco, Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of Vale do São Francisco, Petrolina, PE 56300-990, Brazil. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!