Genetically engineered T cells expressing a chimeric antigen receptor (CAR) have rapidly developed into a powerful and innovative therapeutic modality for cancer patients. However, the problem of dose-dependent systemic toxicity cannot be ignored. In this study, exosomes derived from mesothelin (MSLN)-targeted CAR-T cells were isolated, and we found that they maintain most characteristics of the parental T cells, including surface expression of the CARs and CD3. Furthermore, CAR-carrying exosomes significantly inhibited the growth of both endogenous and exogenous MSLN-positive triple-negative breast cancer (TNBC) cells. The expression of the effector molecules perforin and granzyme B may be a mechanism of tumor killing. More importantly, a highly effective tumor inhibition rate without obvious side effects was observed with the administration of CAR-T cell exosomes in vivo. Thus, the use of CAR-T cell exosomes has great therapeutic potential against MSLN-expressing TNBC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellimm.2020.104262 | DOI Listing |
J Transl Med
January 2025
Evvivax Biotech, Via Castel Romano 100, 00128, Rome, Italy.
In the past decades, Chimeric Antigen Receptor (CAR)-T cell therapy has achieved remarkable success, leading to the approval of six therapeutic products for haematological malignancies. Recently, the therapeutic potential of this therapy has also been demonstrated in non-tumoral diseases. Currently, the manufacturing process to produce clinical-grade CAR-T cells is complex, time-consuming, and highly expensive.
View Article and Find Full Text PDFBreast cancer will overtake all other cancers in terms of diagnoses in 2024. Breast cancer counts highest among women in terms of cancer incidence and death rates. Innovative treatment approaches are desperately needed because treatment resistance brought on by current clinical drugs impedes therapeutic efficacy.
View Article and Find Full Text PDFTrends Pharmacol Sci
January 2025
Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA 90095, USA. Electronic address:
Chimeric antigen receptor (CAR)-T cell therapy has transformed the treatment landscape for hematological cancers. However, achieving comparable success in solid tumors remains challenging. Factors contributing to these limitations include the scarcity of tumor-specific antigens (TSAs), insufficient CAR-T cell infiltration, and the immunosuppressive tumor microenvironment (TME).
View Article and Find Full Text PDFLancet
January 2025
Department of Hematology, Oncology, and Cell Therapy, Otto-von-Guericke University, Magdeburg 39120, Germany. Electronic address:
Biomaterials
December 2024
Institute of Molecular Virology, Ulm University Medical Center, Ulm, 89081, Germany. Electronic address:
Retroviral gene transfer is the preferred method for stable, long-term integration of genetic material into cellular genomes, commonly used to generate chimeric antigen receptor (CAR)-T cells designed to target tumor antigens. However, the efficiency of retroviral gene transfer is often limited by low transduction rates due to low vector titers and electrostatic repulsion between viral particles and cellular membranes. To overcome these limitations, peptide nanofibrils (PNFs) can be applied as transduction enhancers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!