Quiescence and self-renewal of human corneal epithelial progenitor/stem cells (LEPC) are regulated by the limbal niche, presumably through close interaction with limbal (stromal) niche cells (LNC). Paired box homeotic gene 6 (Pax6), a conserved transcription factor essential for eye development, is essential for proper differentiation of limbal and corneal epithelial stem cells. Pax6 haploinsufficiency causes limbal stem cell deficiency, which leads to subsequent corneal blindness. We previously reported that serial passage of nuclear Pax6+ LNC resulted in the gradual loss of nuclear Pax6+ and neural crest progenitor status, the latter of which was reverted upon recovery of Pax6. These findings suggest Pax6 plays a pivotal role in supporting the self-renewal of LEPC in limbal niche. Herein, we show that HC-HA/PTX3, a unique matrix purified from amniotic membrane (AM) and consists of heavy chain 1of inter-α-trypsin inhibitor covalently linked to hyaluronic acid and complexed with pentraxin 3, is capable of reverting senescent LNC to nuclear Pax6+ neural crest progenitors that support self-renewal of LEPC. Such reversion is causally linked to early cell aggregation mediated by activation of C-X-C chemokine receptor type 4 (CXCR4)-mediated signaling followed by activation of bone morphogenetic protein (BMP) signaling. Furthermore, CXCR4-mediated signaling, but not BMP signaling, controls recovery of the nuclear Pax6+ neural crest progenitors. These findings not only explain why AM helps in vivo and ex vivo expansion of human LEPC, but they also illuminate the potential role of HC-HA/PTX3 as a surrogate matrix niche that complements stem cell-based therapies in regenerative medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7986837 | PMC |
http://dx.doi.org/10.1002/stem.3323 | DOI Listing |
Cell Biosci
December 2024
Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
Stem Cell Res Ther
December 2024
Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa.
Background: Embryoid bodies (EBs) are three-dimensional (3D) multicellular cell aggregates that are derived from stem cell and play a pivotal role in regenerative medicine. They recapitulate many crucial aspects of the early stages of embryonic development and is the first step in the generation of various types of stem cells, including neuronal stem cells. Current methodologies for differentiating stem cells into neural embryoid bodies (NEBs) in vitro have advanced significantly, but they still have limitations which necessitate improvement.
View Article and Find Full Text PDFCornea
December 2024
Department of Ophthalmology, Semmelweis University, Budapest, Hungary.
Purpose: In PAX6 syndrome, it is still not clear, whether prenatally, parallel to the iris tissue developmental anomaly, there is neural ectodermal, neural crest, or mesodermal cell deposition at the corneal endothelium, affecting endothelial structure and function. In addition, because of the postnatal corneal inflammation and commonly appearing secondary glaucoma, progressive endothelial changes are expected. Our purpose was to study the corneal endothelium in subjects with PAX6 aniridia, using in vivo confocal laser scanning microscopy.
View Article and Find Full Text PDFJ Cell Physiol
November 2024
Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK.
Cell replacement therapies for ocular diseases characterised by photoreceptors degeneration are challenging due to poor primary cell survival in culture. A stable retinal cell source to replace lost photoreceptors holds promise. Müller glia cells play a pivotal role in retinal homoeostasis by providing metabolic and structural support to retinal neurons, preventing aberrant photoreceptors migration, and facilitating safe glutamate uptake.
View Article and Find Full Text PDFSci Rep
November 2024
Institute of Molecular Oncology and Experimental Therapeutics, Division of Hematology and Oncology, Ruhr University Bochum Medical School, Marien Hospital Herne, Düngelstr. 33, 44623, Herne, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!