A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tunable Electronic Metal-Support Interactions on Ceria-Supported Noble-Metal Nanocatalysts in Controlling the Low-Temperature CO Oxidation Activity. | LitMetric

Tunable Electronic Metal-Support Interactions on Ceria-Supported Noble-Metal Nanocatalysts in Controlling the Low-Temperature CO Oxidation Activity.

Inorg Chem

Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Published: April 2021

A fundamental study on the metal-support interactions of supported metal catalysts is of great importance for developing heterogeneous catalysts with high performance, is still attracting and challenging in many heterogeneous catalytic reactions. In this work, we report the catalytic performances of CeO-supported noble-metal catalysts among single atoms, subnanoclusters (∼1 nm), and nanoparticles (2.2-2.7 nm) upon low-temperature CO oxidation reaction between 50 and 250 °C. The subnanoclusters and nanoparticles of Ru, Rh, and Ir showed much higher activities than those of the single atoms, while a Pd single-atom catalyst was more active than Pd subnanoclusters and nanoparticles. According to the results of multiple ex situ and in situ characterizations, the much different activities of Ru, Rh, Ir, and Pd were derived from the alterable electronic metal-support interactions (EMSI), which determine the concurrent reaction pathway including the famous Mars van Krevelen mechanism and carbonate-intermediate route on the most active metal sites of M (0 < δ < 1) for Ru, Rh, and Ir and Pd for Pd. Also, the moderate EMSI of CeO-supported Rh subnanoclusters furthest benefited activation of the adsorbed CO molecule and ensured it the highest activity among CeO-supported Ru, Rh, and Ir catalysts with similar metal deposit sizes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.0c03219DOI Listing

Publication Analysis

Top Keywords

metal-support interactions
12
electronic metal-support
8
low-temperature oxidation
8
single atoms
8
subnanoclusters nanoparticles
8
tunable electronic
4
interactions ceria-supported
4
ceria-supported noble-metal
4
noble-metal nanocatalysts
4
nanocatalysts controlling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!