Silver tungstate (AgWO) shows structural polymorphism with different crystalline phases, namely, orthorhombic, hexagonal, and cubic structures that are commonly known as α, β, and γ, respectively. In this work, these AgWO polymorphs were selectively and successfully synthesized through a simple precipitation route at ambient temperature. The polymorph-controlled synthesis was conducted by means of the volumetric ratios of the silver nitrate/tungstate sodium dehydrate precursors in solution. The structural and electronic properties of the as-synthesized AgWO polymorphs were investigated by using a combination of X-ray diffraction and Rietveld refinements, X-ray absorption spectroscopy, X-ray absorption near-edge structure spectroscopy, field-emission scanning electron microscopy images, and photoluminescence. To complement and rationalize the experimental results, first-principles calculations, at the density functional theory level, were carried out, leading to an unprecedented glimpse into the atomic-level properties of the morphology and the exposed surfaces of AgWO polymorphs. Following the analysis of the local coordination of Ag and W cations (clusters) at each exposed surface of the three polymorphs, the structure-property relationship between the morphology and the photocatalytic and antibacterial activities against amiloride degradation under ultraviolet light irradiation and methicillin-resistant , respectively, was investigated. A possible mechanism of the photocatalytic and antibacterial activity as well the formation process and growth of the polymorphs is also explored and proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.0c03186 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!