The effectiveness of on-farm continuous flow high-temperature short-time (HTST) pasteurization (i.e., 72°C for 15 s) for the inactivation of bovine leukemia virus (BLV) in milk was investigated with a sheep bioassay. Four sheep that had been inoculated with completely pasteurized milk containing approximately 3.4 × 10 BLV-infected peripheral blood mononuclear cells (PBMC) and treated by either HTST pasteurization or laboratory-scale low-temperature long-time (LTLT) pasteurization (i.e., 60°C for 30 min), remained negative for BLV for at least 17 weeks after inoculation. In contrast, all sheep inoculated with unpasteurized or inadequately pasteurized milk containing the same number of BLV-infected PBMC were tested positive for BLV and anti-BLV antibodies within 3 weeks after inoculation. These results suggest that on-farm continuous flow HTST pasteurization was equivalent value with inactivated BLV on the LTLT procedure and can effectively inactivate BLV in the milk. Therefore, on-farm HTST pasteurization of the pooled colostrum or milk used in automated feeding systems is likely to protect group-housed preweaned calves from BLV infection, thereby improving animal health on dairy farms.

Download full-text PDF

Source
http://dx.doi.org/10.1111/asj.13495DOI Listing

Publication Analysis

Top Keywords

htst pasteurization
16
on-farm continuous
12
continuous flow
12
effectiveness on-farm
8
flow high-temperature
8
high-temperature short-time
8
inactivation bovine
8
bovine leukemia
8
leukemia virus
8
blv milk
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!