The direct-write fabrication of freestanding nanoantennas for plasmonic applications is a challenging task, as demands for overall morphologies, nanoscale features, and material qualities are very high. Within the small pool of capable technologies, three-dimensional (3D) nanoprinting via focused electron beam-induced deposition (FEBID) is a promising candidate due to its design flexibility. As FEBID materials notoriously suffer from high carbon contents, the chemical postgrowth transfer into pure metals is indispensably needed, which can severely harm or even destroy FEBID-based 3D nanoarchitectures. Following this challenge, we first dissect FEBID growth characteristics and then combine individual advantages by an advanced patterning approach. This allows the direct-write fabrication of high-fidelity shapes with nanoscale features in the sub-10 nm range, which allow a shape-stable chemical transfer into plasmonically active Au nanoantennas. The here-introduced strategy is a generic approach toward more complex 3D architectures for future applications in the field of 3D plasmonics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c17030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!