Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Single atom (SA), noble metal catalysts are of interest due to high projected catalytic activity while minimizing cost. Common issues facing many synthesis methodologies include complicated processes, low yields of SA product, and production of mixtures of SA and nanoparticles (NPs). Herein we report a simple, room-temperature synthesis of single Pt-atom decorated, anatase Fe-doped TiO particles that leverages the Fe dopant as an engineered defect site to photodeposit and stabilize atomically dispersed Pt. Both particle morphology and Fe dopant location are based on thermodynamic principles (Gibbs-Wulff construction). CO-DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy) reveals absence of bridge-bonded CO signal, confirming atomically dispersed Pt. XAS (X-ray absorption spectroscopy) of both Pt and Fe indicates Fe-O-Pt bonding that persists through catalytic cycling. Mass balance indicates that the Pt loading on single particles is 2.5 wt % Pt; the single Pt-atom decorated nanoparticle yield is 17%. Pt-containing particles show more than an order-of-magnitude increased photooxidation efficiency relative to particles containing only Fe. High single-atom-Pt yield, ease of synthesis, and high catalytic activity demonstrate the utility and promise of this method. The principles of this photodeposition synthesis allow for its generalizability toward other SA metals of catalytic interest.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.0c08527 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!