N-Heterocyclic Carbene/Magnesium Cocatalyzed Radical Relay Assembly of Aliphatic Keto Nitriles.

Org Lett

School of Science, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China.

Published: January 2021

An unprecedented N-heterocyclic carbene and magnesium cocatalyzed three-component acylcyanoalkylation of alkenes with cycloketone oxime esters and aldehydes is presented. This method displayed good scope generality, providing a transition-metal- and photoredox-free pathway to access various multifunctionalized aliphatic keto nitrile structures under mild reaction conditions. Moreover, this strategy is supposed to follow a radical relay mechanism via a single electron transfer event of a Mg/matched Breslow intermediate/oxime ester electron-donating acceptor (EDA) complex.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.0c03883DOI Listing

Publication Analysis

Top Keywords

radical relay
8
aliphatic keto
8
n-heterocyclic carbene/magnesium
4
carbene/magnesium cocatalyzed
4
cocatalyzed radical
4
relay assembly
4
assembly aliphatic
4
keto nitriles
4
nitriles unprecedented
4
unprecedented n-heterocyclic
4

Similar Publications

Developing a self-sensitized catalyst from earth-abundant elements, capable of efficient light harvesting and electron transfer, is crucial for enhancing the efficacy of CO transformation, a critical step in environmental cleanup and advancing clean energy prospects. Traditional approaches relying on external photosensitizers, comprising 4d/5d metal complexes, involve intermolecular electron transfer, and attachment of photosensitizing arms to the catalyst necessitates intramolecular electron transfer, underscoring the need for a more integrated solution. We report a new Cu(ii) complex, K[CuNDPA] (1[K(18-crown-6)]), bearing a dipyrrin amide-based trianionic tetradentate ligand, NDPA (HL), which is capable of harnessing light energy, despite having a paramagnetic Cu(ii) centre, without any external photosensitizer and photocatalytically reducing CO to CO in acetonitrile : water (19 : 1 v/v) with a TON as high as 1132, a TOF of 566 h and a selectivity of 99%.

View Article and Find Full Text PDF

Multicomponent Synthesis of Alkyl BCP-Heteroaryls via Electron Donor-Acceptor Complex Photoactivation under Mild Conditions.

J Org Chem

January 2025

College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.

In the vanguard of sustainable chemistry, the pursuit of efficient pathways for the synthesis of alkyl bicyclo[1.1.1]pentane-heteroaryls has captured the attention of the scientific vanguard.

View Article and Find Full Text PDF

Molecular Photoelectrocatalysis for Radical Reactions.

Acc Chem Res

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China.

ConspectusMolecular photoelectrocatalysis, which combines the merits of photocatalysis and organic electrosynthesis, including their green attributes and capacity to offer novel reactivity and selectivity, represents an emerging field in organic chemistry that addresses the growing demands for environmental sustainability and synthetic efficiency. This synergistic approach permits access to a wider range of redox potentials, facilitates redox transformations under gentler electrode potentials, and decreases the use of external harsh redox reagents. Despite these potential advantages, this area did not receive significant attention until 2019, when we and others reported the first examples of modern molecular photoelectrocatalysis.

View Article and Find Full Text PDF

Visible Light-Driven Interrupted Barton Reaction: Intermolecular Radical-Relay Sulfonyloximation of Alkenes with DABSO and Alkyl Nitrites.

Org Lett

January 2025

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.

A visible light-driven, intermolecular interrupted Barton reaction has been developed for radical-relay sulfonyloximation of alkenes with alkyl nitrites, using DABSO as a trapping reagent. This method overcomes the challenges of competing normal Barton reactions and polarity mismatches by rapidly and irreversibly capturing alkyl radicals, preventing unwanted side reactions. The resulting polarity-reversed sulfonyl radicals undergo highly selective addition to alkenes, yielding α-alkylsulfonyl ketoximes tethered to hydroxyl or ketone groups.

View Article and Find Full Text PDF

Photoinduced Radical Relay Reaction of 2-Methylthiolated Phenylacetylenes/Alkynones Initiated by Electron Donor-Acceptor Complexes.

Org Lett

January 2025

Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.

A method was found to construct sulfur-containing five- and six-membered heterocyclic alkyl sulfonyl compounds by using visible light and free radicals activated and/or generated by EDA complexes/homolytic cleavage as initiators to stimulate the relay reaction of alkynes/alkynones. This method puts forward a new strategy to initiate alkyl sulfonation of alkynes/alkynones with only a catalytic amount of the initiator. This strategy of generating the initiator by EDA complex activation/homolytic cleavage provides a new idea for the following substances that must be excited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!