The adjustment of the C/N ratio by straw combined with fertilizer nitrogen (N) not only affects straw decomposition but also affects soil organic carbon (SOC) decomposition, i.e. the priming effects. Therefore, it is doubly important to study how the ratios of straw to N fertilizer influence the release of endogenous and exogenous C for greenhouse gas emission reduction and soil fertility improvement. We conducted a 32-week laboratory incubation experiment with C labeled maize straw under different N levels in farmland soil collected from fields in Huantai County to investigate the effect of the ratios of straw to N fertilizer on straw decomposition and the priming effects. Four treatments were set up, including CK, corn straw (S), corn straw+low urea rates (SN1), and corn straw+high urea rates (SN2). Dynamic sampling was conducted during the early stage (0-10 d), the middle stage (11-43 d), and the later stage (44-224 d) of straw decomposition. The approach was based on using a two-source mixing model to differentiate two sources of soil CO (straw and soil-derived C). With an increase in the incubation time, the contribution of SOC decomposition to soil CO emissions first decreased and then increased. On the contrary, the contribution of straw mineralization to soil CO emissions first increased and then decreased. By the end of the incubation time, the contribution of SOC and straw decomposition to soil CO emissions was 0.84-0.86 and 0.14-0.16, respectively. Over the whole incubation period, the effects of N fertilization on straw decomposition first increased and then decreased. The promotion degree of high and low N fertilization on straw decomposition was up to 15.8% and 7.9%, respectively. Over the whole incubation period, the inhibition degree of low N fertilization reached up to 7.1%, while high N fertilization showed a slight promotion trend of 0.7%. Therefore, the regulation of C:N by straw combined with fertilizer N not only affected the contribution of exogenous straw to SOC but also influenced the decomposition of endogenous SOC, and then influenced soil C fixation. Over the whole incubation period, straw C retention could not compensate for CO released by the priming effects, which led to a net loss of SOC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.202004232 | DOI Listing |
Sci Rep
January 2025
Department of Landscape Architecture, Poznań University of Life Sciences, 159 Dąbrowskiego Street, Poznań, 60-594, Poland.
As a result of human activities, surface waters worldwide are experiencing increasing levels of eutrophication, leading to more frequent occurrences of microalgae, including harmful algal blooms. We aimed to investigate the impact of decomposing camelina straw on mixed phytoplankton communities from eutrophic water bodies, comparing it to the effects of barley straw. The research was carried out in 15 aquaria (five of each type - containing no straw, camelina straw, and barley straw).
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
In this investigation, the influence of organic amendment on the structural and functional dynamics of soil microbial communities and its effect on rice productivity were examined. Five fertilization treatments from a 40-year field experiment were selected: no fertilizer (CK), inorganic NPK fertilizer (NPK), inorganic NPK combined with green manure (NG), inorganic NPK combined with green manure and pig manure (NGM), and inorganic NPK combined with green manure and rice straw (NGS). The findings revealed that the organic amendment enhanced the soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) levels, alongside an increase in rice yield; notably, the most significant improvements were observed with the NGM treatment.
View Article and Find Full Text PDFSci Total Environ
December 2024
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, 211135 Nanjing, China. Electronic address:
Dissolved organic matter (DOM) is pivotal for soil biogeochemical processes, soil fertility, and ecosystem stability. While numerous studies have investigated the impact of fertilization practices on DOM content along soil profiles, variations in DOM chemodiversity and the underlying factors across soil profiles under long-term fertilization regimes remain unclear. Using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and high-throughput sequencing, this study investigated DOM composition characteristics and microbial community compositions across different soil layers (0-20, 20-40, 40-60, and 60-100 cm) in paddy soil under different long-term fertilization treatments, including Control (no fertilizer), NPK (mineral NPK fertilizer), NPKHS (NPK fertilizer with half straw return), and NPKS (NPK fertilizer with full straw return).
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China. Electronic address:
Dissolved organic matter (DOM) released by straw returning for decomposition interacts with selenium (Se) in soil, which affects the speciation distribution of Se and its bioavailability. However, the relative mechanisms involved are slightly understood. This study investigated the effects of straw-derived DOM on two levels of exogenous selenite (low-Se and high-Se treatments) in two types of soil with distinct pH.
View Article and Find Full Text PDFFront Microbiol
December 2024
Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China.
Returning straw can alter the soil microbial community, reduce the occurrence of soilborne diseases, and promote plant growth. In this study, we aimed to evaluate the effects of Ricinus straw on tomato growth and rhizosphere microbial community. We carried out microcosm experiments to investigate the effects of Ricinus straw with different dosages (0, 1, and 3%) on tomato dry biomass and rhizosphere bacterial and fungal communities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!