Phytoplankton and bacteria are crucial components of aquatic food webs, playing critical roles in the structure and function of freshwater ecosystems. However, there are few studies on how the algal and bacterial communities interact and respond to changing environmental conditions in the water reservoirs. Thus, the ecological interaction relationship between the temporal succession of the phytoplankton community and the bacterial community was investigated using 16S rDNA high-throughput sequencing and a co-occurrence network in the Lijiahe Reservoir. The results showed that Bacillariophyta and Chlorophyta were also dominant taxa in the phytoplankton community. In August, Cyanobacteria replaced Bacillariophyta as the second-most dominant taxa, with an average relative abundance of 30.13%. DNA sequencing showed that Proteobacteria, Actinobacteria, and Bacteroidetes dominated throughout the year. Proteobacteria reached a maximum relative abundance of 71.68% in July. Acidobacteria and Deinococcus-Thermus, which were rare taxa, reached maximum relative abundances of 10.20% and 5.56%, respectively. The co-occurrence network showed that the association between algae and bacteria was mainly positive, indicating that the interaction between them may be dominated by mutualism. As a keystone taxa, was significantly and positively related to . was also a keystone taxa and was significantly and negatively correlated with various bacteria, such as , , and . An RDA analysis showed that the succession of algal and bacterial communities was significantly regulated by water temperature, pH, and conductivity, and the environmental factors explained 93.1% and 90% of the variation in the algal community and bacterial community, respectively. The results will provide a scientific basis for exploring the micro-ecological driving mechanism of the interaction between algae and bacteria in deep drinking water reservoir ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.202006234 | DOI Listing |
Curr Microbiol
January 2025
DBT-North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India.
Aquilaria malaccensis Lam., an Agarwood-producing tree native to Southeast Asia, secretes oleoresin, a resin with diverse applications, in response to injuries. To explore the role of endosphere microbial communities during Agarwood development, we utilized a metagenomics approach across three stages: non-symptomatic (NC), symptomatic early (IN), and symptomatic mature (IN1).
View Article and Find Full Text PDFCommun Biol
January 2025
Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China.
Leaf endospheres harbor diverse bacterial communities, comprising generalists and specialists, that profoundly affect ecosystem functions. However, the ecological dynamics of generalist and specialist leaf-endophytic bacteria and their responses to climate change remain poorly understood. We investigated the diversity and environmental responses of generalist and specialist bacteria within the leaf endosphere of mangroves across China.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Systems Ecology and Sustainability, Faculty of Biology, University of Bucharest, Bucharest, Romania.
As conservation agricultural practices continue to spread, there is a need to understand how reduced tillage impacts soil microbes. Effects of no till (NT) and disk till (DT) relative to moldboard plow (MP) were investigated in a long-term experiment established on Chernozem. Results showed that conservation practices, especially NT, increased total, active and microbial biomass carbon.
View Article and Find Full Text PDFNat Microbiol
January 2025
Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA.
Ecology and evolution are considered distinct processes that interact on contemporary time scales in microbiomes. Here, to observe these processes in a natural system, we collected a two-decade, 471-metagenome time series from Lake Mendota (Wisconsin, USA). We assembled 2,855 species-representative genomes and found that genomic change was common and frequent.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China. Electronic address:
In this study, a large drinking water reservoir (Fengshuba Reservoir) was chosen as a representative case, and the bacterial communities in the sediments and soils of Water-level fluctuating zone (WLFZ) as well as their responses to heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) were systematically investigated. The results indicated that the abundance and diversity of the bacterial community obviously changed with seasonal hydrological variations in sediments, and the absolute abundance and composition of bacteria community differed significantly between the sediment phase and soil phase. Bacteria with the ability to degrade pollutants rapidly proliferate and gain ascendancy in the soil phase, with Burkholderia-Caballeronia-Paraburkholderia (B-C-P) and Bradyrhizobium forming the core of the largest community.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!