Food safety and food production are closely related to the health of consumers. Food-related accidents often cause tremendous losses of personnel and property. Thus, rapid detection and analysis of ingredients in food, tracing food sources, studying the optimal conditions for food production, and more are vital for preventing incidents related to safety. Conventional analysis based on proteomics, microbial cultures, and morphology, as well as biochemical tests based on metabonomics, are considered gold standards and used frequently, but they are labor-intensive, time-consuming, tedious, error-prone, and incapable of meeting the demand for rapid and precise detection at a large scale. Alternative detection methods that utilize capillary electrophoresis have the advantages of high efficiency, high throughput, high speed, and automation; these methods are coupled with various nucleic acid detection strategies to overcome the drawbacks of traditional identification methods, and to prevent false results. Therefore, this review focuses on the application of capillary electrophoresis based on nucleic acid detection in food analysis and provides an introduction to the limitations, advantages, and future developments of this approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1541-4337.12297 | DOI Listing |
J Microsc
January 2025
Faculty of Medicine Carl Gustav Carus, Experimental Center, Technische Universität Dresden, Dresden, Germany.
Ribosomes, discovered in 1955 by George Palade, were initially described as small cytoplasmic particles preferentially associated with the endoplasmic reticulum (ER). Over the years, extensive research has focused on both the structure and function of ribosomes. However, a fundamental question - how many ribosomes are present within whole cells - has remained largely unaddressed.
View Article and Find Full Text PDFAquat Toxicol
January 2025
Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina - UFSC, Florianópolis, SC 88037-000, Brazil. Electronic address:
Personal care products (PCPs), such as sunscreens, are usually found in various aquatic ecosystems at low concentrations (ng l to µg l). However, there is limited information regarding their effects on marine bivalves. Therefore, the aim of this study was to evaluate the sublethal effects of environmental concentrations (1 and 100 µg l) of benzophenone-3 (BP-3) in Crassostrea gigas oysters after 1 and 7 days of exposure.
View Article and Find Full Text PDFJ Pharm Biomed Anal
January 2025
State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China; Simcere Zaiming Pharmaceutical Co, Ltd., Nanjing, China. Electronic address:
Capillary electrophoresis-sodium dodecyl sulfate (CE-SDS) is widely used in the biopharmaceutical industry for monitoring purity and analyzing impurities. The accuracy of the method may be compromised by artificial species resulting from sample preparation or electrophoresis separation due to suboptimal conditions. During non-reduced CE-SDS analysis of a multispecific antibody (msAb), named as multispecific antibody C (msAb-C), a cluster of unexpected peaks was observed after the main peak.
View Article and Find Full Text PDFBackground: Hemoglobin G-Siriraj is a rare hemoglobin variant caused by a β-globin gene mutation (HBB: c.22G>A). The focus of this paper is aimed mainly at the chromatographic and electrophoretic properties of hemoglobin G-Siriraj for a presumptive identification.
View Article and Find Full Text PDFBackground: Glycosylated hemoglobin (HbA1c) is a stable compound in human blood that covalently binds the N-terminal valine residue of the β-chain in hemoglobin A to the free aldehyde group of glucose. It can reflect the average blood glucose level of patients in the past 2 - 3 months. Therefore, the accuracy of HbA1c detection results is of great significance for the diagnosis and differential diagnosis of diabetes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!