Photocatalytic Overall Water Splitting by SrTiO with Surface Oxygen Vacancies.

Nanomaterials (Basel)

College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.

Published: December 2020

Strontium Titanate has a typical perovskite structure with advantages of low cost and photochemical stability. However, the wide bandgap and rapid recombination of electrons and holes limited its application in photocatalysis. In this work, a SrTiO material with surface oxygen vacancies was synthesized via carbon reduction under a high temperature. It was successfully applied for photocatalytic overall water splitting to produce clean hydrogen energy under visible light irradiation without any sacrificial reagent for the first time. The photocatalytic overall water splitting ability of the as-prepared SrTiO-C950 is attributed to the surface oxygen vacancies that can make suitable energy levels for visible light response, improving the separation and transfer efficiency of photogenerated carriers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7767457PMC
http://dx.doi.org/10.3390/nano10122572DOI Listing

Publication Analysis

Top Keywords

photocatalytic water
12
water splitting
12
surface oxygen
12
oxygen vacancies
12
visible light
8
splitting srtio
4
srtio surface
4
vacancies strontium
4
strontium titanate
4
titanate typical
4

Similar Publications

The study focused on converting tea bag waste into strong fluorescence carbon quantum dots (TBW-CQDs) for the detection of acrylamide in drinking water, antimicrobial activity, and photocatalytic degradation. The TBW-CQDs exhibited blue luminescence and maximum absorbance at 287 nm under UV light and distinctive fluorescence emission and excitation wavelengths at 425 nm and 287 nm, respectively. TBW-CQDs revealed a particle size of 8.

View Article and Find Full Text PDF

Developing a self-sensitized catalyst from earth-abundant elements, capable of efficient light harvesting and electron transfer, is crucial for enhancing the efficacy of CO transformation, a critical step in environmental cleanup and advancing clean energy prospects. Traditional approaches relying on external photosensitizers, comprising 4d/5d metal complexes, involve intermolecular electron transfer, and attachment of photosensitizing arms to the catalyst necessitates intramolecular electron transfer, underscoring the need for a more integrated solution. We report a new Cu(ii) complex, K[CuNDPA] (1[K(18-crown-6)]), bearing a dipyrrin amide-based trianionic tetradentate ligand, NDPA (HL), which is capable of harnessing light energy, despite having a paramagnetic Cu(ii) centre, without any external photosensitizer and photocatalytically reducing CO to CO in acetonitrile : water (19 : 1 v/v) with a TON as high as 1132, a TOF of 566 h and a selectivity of 99%.

View Article and Find Full Text PDF

This work reports the step-wise fabrication of a core-shell plasmonic nanocomposite Pd@BTL-Cd consisting of a BTL-Cd shell and a palladium nanoparticle core. BTL-Cd is the [Cd(BTL)·CdCl] complex where the heptadentate framework of the bis-compartmental ligand encapsulated two Cd(II) centres in separate pockets. Pd@BTL-Cd has been found to be highly efficient for the photocatalytic conversion of furfural (a biomass-derived aldehyde) to furfuryl amine reductive amination in aqueous ammonia at room temperature.

View Article and Find Full Text PDF

Mesoporous Fe2O3-TiO2 Integrated with Plasmonic Ag Nanoparticles for Enhanced Solar H2 Production.

Chem Asian J

January 2025

CSIR-National Chemical Laboratory: CSIR National Chemical Laboratory, Catalysis and Inorganic Chemistry Division, Dr. Homi Bhabha Road, 411 008, Pune, INDIA.

Present work describes a sol-gel assisted one-pot synthesis of mesoporous Fe₂O₃-TiO₂ nanocomposites (TiFe) with different Ti:Fe ratios, and fabrication of Ag-integrated with TiFe nanocomposites (TiFeAg) by a chemical reduction method and demonstrated for high solar H2 generation activity in direct sunlight. Enhanced solar H2 production is attributed to the light absorption from entire UV+Visible region of solar spectrum combined with Schottky (Ag-semiconductor) and heterojunctions (TiO2-Fe2O3), as evidenced from HRTEM and various characterization studies.  TiFeAg-2 thin film (1 wt% Ag-loaded TiFe-4) displayed the highest activity with a solar H2 yield of 7.

View Article and Find Full Text PDF

Efficient charge separation at the semiconductor/cocatalyst interface is crucial for high-performance photoelectrodes, as it directly influences the availability of surface charges for solar water oxidation. However, establishing strong molecular-level connections between these interfaces to achieve superior interfacial quality presents significant challenges. This study introduces an innovative electrochemical etching method that generates a high concentration of oxygen vacancy sites on BiVO surfaces (Ov-BiVO), enabling interactions with the oxygen-rich ligands of MIL-101.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!