A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An efficient and simple method using a graphite oxide electrochemical sensor for the determination of glyphosate in environmental samples. | LitMetric

An efficient and simple method using a graphite oxide electrochemical sensor for the determination of glyphosate in environmental samples.

Sci Total Environ

Department of Analytical Chemistry, Natural Resources Program (PGRN), Mato Grosso do Sul State University (UEMS), P.O. Box 351, Dourados, MS 7984-970, Brazil. Electronic address:

Published: December 2020

Excessive and indiscriminate use of the herbicide glyphosate (GLY) leaves the environment susceptible to its contamination. This work describes the development of a simple, inexpensive, and efficient electroanalytical method using graphite oxide paste electrode (GrO-PE) for the direct determination of GLY traces in groundwater samples, soybean extracts, and lettuce extracts. Under optimal experimental conditions, the developed sensor exhibited a linear response of the peak current intensity vs. the concentration, in the range of 1.8 × 10 to 1.2 × 10 mol L for GLY. The limits of detection and quantification are 1.7 × 10 mol L and 5.6 × 10 mol L, respectively. The methodology developed here demonstrated a strong analytical performance, with high reproducibility, repeatability, and precision. Moreover, it successfully avoided interference from other substances, showing high selectivity. The GrO-PE sensor was effectively applied to determine GLY traces in real samples with recovery rates ranging from 98% to 102%. Results showed that the GrO-PE is effective and useful for GLY detection, with the advantage of not involving laborious modifications and complicated handling, making it a promising tool for environmental analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.142385DOI Listing

Publication Analysis

Top Keywords

method graphite
8
graphite oxide
8
gly traces
8
gly
5
efficient simple
4
simple method
4
oxide electrochemical
4
electrochemical sensor
4
sensor determination
4
determination glyphosate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!