AI Article Synopsis

  • - C60 fullerene nanoparticles can negatively impact lung mechanics and mitochondrial function in mice, leading to increased inflammation and pulmonary issues.
  • - In a study, mice exposed to C60 showed heightened lung tissue stiffness, more inflammatory cells, and lung edema compared to a control group.
  • - Mitochondria from C60-exposed mice demonstrated reduced oxygen consumption and ATP production, along with elevated reactive oxygen species (ROS), suggesting significant cellular stress.

Article Abstract

C60 fullerene (C60) nanoparticles, a nanomaterial widely used in technology, can offer risks to humans, overcome biological barriers, and deposit onto the lungs. However, data on its putative pulmonary burden are scanty. Recently, the C60 interaction with mitochondria has been described and . We hypothesized that C60 impairs lung mechanics and mitochondrial function. Thirty-five male BALB/c mice were randomly divided into two groups intratracheally instilled with vehicle (0.9% NaCl + 1% Tween 80, CTRL) or C60 (1.0 mg/kg, FUL). Twenty-four hours after exposure, 15 FUL and 8 CTRL mice were anesthetized, paralyzed, and mechanically ventilated for the determination of lung mechanics. After euthanasia, the lungs were removed at end-expiration for histological processing. Lung tissue elastance and viscance were augmented in FUL group. Increased inflammatory cell number, alveolar collapse, septal thickening, and pulmonary edema were detected. In other six FUL and six CTRL mice, mitochondria expressed reduction in state 1 respiration [FUL = 3.0 ± 1.14 vs. CTRL = 4.46 ± 0.9 (SEM) nmol O/min/mg protein,  = 0.0210], ATP production (FUL = 122.6 ± 18 vs. CTRL = 154.5 ± 14 μmol/100 μg protein,  = 0.0340), and higher oxygen consumption in state 4 [FUL = 12.56 ± 0.9 vs. CTRL = 8.26 ± 0.6], generation of reactive oxygen species (FUL 733.1 ± 169.32 vs. CTRL = 486.39 ± 73.1 nmol/100 μg protein,  = 0.0313) and reason ROS/ATP [FUL = 8.73 ± 2.3 vs. CTRL = 2.99 ± 0.3]. In conclusion, exposure to fullerene C60 impaired pulmonary mechanics and mitochondrial function, increased ROS concentration, and decrease ATP production.

Download full-text PDF

Source
http://dx.doi.org/10.1080/17435390.2020.1863498DOI Listing

Publication Analysis

Top Keywords

mitochondrial function
12
c60 fullerene
8
fullerene c60
8
lung mechanics
8
mechanics mitochondrial
8
ctrl
8
ful ctrl
8
ctrl mice
8
atp production
8
c60
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!