Chronic hypoxia in the renal tubulointerstitium plays a key role in the progression of chronic kidney disease (CKD). It is therefore important to investigate tubular hypoxia and the activity of hypoxia-inducible factor (HIF)-1α in response to hypoxia. Rarefaction of the peritubular capillary causes hypoperfusion in CKD; however, the effect of hypoperfusion on HIFs has rarely been investigated. We induced hypoperfusion caused by coverslip placement in human kidney-2 cells, and observed an oxygen gradient under the coverslip. Immunocytochemistry of HIF-1α showed a doughnut-shaped formation on the edge of a pimonidazole-positive area, which we named the "HIF-ring". The oxygen tension of the HIF-ring was estimated to be between approximately 4 mmHg and 20 mmHg. This result was not compatible with those of past research showing HIF-1α accumulation in the anoxic range with homogeneous oxygen tension. We further observed the presence of a pH gradient under a coverslip, as well as a shift of the HIF ring due to changes in the pH of the culture medium, suggesting that the HIF ring was formed by suppression of HIF-1α related to low pH. This research demonstrated that HIF-1α activation mimics the physiological state in cultured cells with hypoperfusion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7769172PMC
http://dx.doi.org/10.14814/phy2.14689DOI Listing

Publication Analysis

Top Keywords

cells hypoperfusion
8
coverslip placement
8
gradient coverslip
8
oxygen tension
8
hif ring
8
hypoperfusion
5
hif-1α
5
distinctive distribution
4
distribution hypoxia-inducible
4
hypoxia-inducible factor-1α
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!