A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structural and Dynamical Impact of Water Molecules at Substrate- or Product-Binding Sites in Human GMPR Enzyme: A Study by Molecular Dynamics Simulations. | LitMetric

Structural and Dynamical Impact of Water Molecules at Substrate- or Product-Binding Sites in Human GMPR Enzyme: A Study by Molecular Dynamics Simulations.

J Phys Chem B

Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi 110025, India.

Published: February 2021

AI Article Synopsis

  • - The human guanosine monophosphate reductase (hGMPR) enzyme is key in regulating nucleotide balance and presents a target for developing therapies against leukemia by focusing on its isoforms.
  • - A study using molecular dynamics simulations identified 19 critical water sites within the hGMPR enzyme's binding pocket that influence its catalytic activity and structural stability when interacting with substrates and products like GMP and IMP.
  • - Unique water-related interactions and the distinct structural dynamics of hGMPR in cancerous versus normal states highlight potential pathways for creating novel drug designs aimed at hGMPR, potentially aiding in leukemia treatment.

Article Abstract

Human guanosine monophosphate reductase (hGMPR) enzyme maintains the intracellular balance between adenine and guanine nucleotide pools, and it is an excellent target for the design of isoform-specific antileukemic agents. In the present study, we have investigated solvation properties of substrate GMP or product inosine-5'-monophosphate (IMP)-binding pocket of hGMPR by employing molecular dynamics simulations on conformations A (substrate GMP), B [substrate GMP with cofactor nicotinamide adenine dinucleotide phosphate (NDP)], C (product IMP with cofactor NDP), and D (product IMP). Nineteen water sites are identified precisely; they are responsible for the catalytic activity of this site, control structural and dynamical integrity, and electronic consequences of GMP or IMP in the binding site of hGMPR. The water sites of category-1 (W1, W4, W5, W6, W13, and W15) in normal protein and category-2 (W2, W3, W7, W8, W10, W17, and W18) in cancerous protein are unique and stabilize the guanosine or inosine group of GMP or IMP for participation in the enzymatic reaction, whereas the remaining water centers either stabilize pentose sugar ribose or the phosphate group of GMP or IMP. Furthermore, water sites of category-4 (W11, W14, and W16) appear to be conserved in all conformations during the entire simulation. The GMP-binding site in cancerous protein 2C6Q is significantly expanded, and its dynamics are very different from normal protein 2BLE. Furthermore, unique interactions of GMP(N1)···W2···Asp129/Asn158, IMP(N1)···W3···Glu289, and IMP(O6)···W10···Ser270 might be used in a water mimic drug design for hGMPR-II. In this context, water finding probability, relative interaction energy () associated with water site W, entropy, and topologies of these three water sites are thermodynamically acceptable for the water displacement method by the modified ligand. Hence, their positions in the catalytic pocket may also facilitate future drug discovery for chronic myelogenous leukemia by the design of appropriately oriented chemical groups that may displace these water molecules to mimic their structural, electronic, and thermodynamic properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.0c08818DOI Listing

Publication Analysis

Top Keywords

water sites
16
gmp imp
12
water
11
structural dynamical
8
water molecules
8
molecular dynamics
8
dynamics simulations
8
substrate gmp
8
product imp
8
normal protein
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!