Objective: Side effects of radiation therapy may include skin damage. The surface dose is of great interest and contains the buildup effect. In particular, the proton therapy community requires further experimental data to quantify doses in the surface region. This specification includes the skin dose, which is defined according to ICRU Report No. 39 at 70 μm water equivalent depth. The aim of this study is to gather more knowledge of the skin dose by varying key parameters defined by the patient treatment plan. This consists of clinical aspects such as the influence of the air gap, the application of a range shifter (RS), or the proton delivery technique.
Material/methods: Skin doses were determined with a PTW 23391 extrapolation chamber with three thin Kapton® entrance windows operated as a conventional ionization chamber. The impact on the skin dose for quasi-monoenergetic pencil beam scanning (PBS) proton beams was evaluated for clinical air gaps between 3.5 and 51.1 cm. The differences in skin dose were assessed by irradiating equivalent fields with an RS of 51 mm water equivalent thickness (RS51) and without. Furthermore, the delivery techniques PBS, uniform scanning (US), and double scattering (DS) were compared by defining a spread-out Bragg peak (SOBP). TOPAS (V.3.1.2) was used to model an IBA nozzle with PBS and to score dose to water at the surface of a water phantom.
Results: For the monoenergetic fields without the application of the RS the skin dose was constant down to an air gap of 6.2 cm. A lower air gap of 3.5 cm showed a variation in skin dose by up to 2.4% compared to the results obtained with larger air gaps. With the inserted RS51 an increase in the skin dose was found for air gaps smaller than 11.3 cm. Experimentally, a dose difference of 1.4% was recorded for an air gap of 6.2 cm by inserting an RS and none. With the Monte Carlo calculations the largest dose increase was observed at the air gap of 3.5 cm with 1.7% and 4.0% relative to the skin dose results without the RS and to the largest evaluated air gap of 51.1 cm, respectively. The SOBP comparison of the beam modalities at the measuring plane at the isocenter revealed higher skin doses without RS (including RS) by up to +1.9% (+1.5%) for DS and +1.3% (+1.1%) for US compared to PBS. For all three techniques an approx. 2% rise in skin dose was observed for the largest evaluated air gap of 37.7 cm to an air gap of 6.2 cm when using an RS51.
Conclusion: The study investigated aspects of skin dose of a water equivalent phantom by varying key parameters of a proton treatment plan. Parameters like the RS, the air gap, and the delivery modality have an impact on the order of 4.0% for the skin dose at the depth of 70 μm. The increases in skin dose are the effects of the contribution of the increased electron fluence at small air gaps and the emitted hadronic particles produced by the RS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.14626 | DOI Listing |
Xenotransplantation
January 2025
Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA.
Background: The removal of preformed antibodies with cleaving enzyme like IdeS (Imlifidase) has demonstrated therapeutic potential in organ transplantation for sensitized recipients. However, preformed xenoreactive antibodies (XAbs) against porcine glycans are predominantly IgM and considered detrimental in pig-to-human xenotransplantation.
Methods: Recombinant IceM, an endopeptidase cleaving IgM, was generated in Escherichia coli.
Clin Cosmet Investig Dermatol
January 2025
Photodermatology Unit, Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
Visible light has been considered to have minimal impact on the skin. However, the increasing use of electronic devices has led to a significant increase in exposure to visible light, especially blue light. We measured the irradiance (mW/cm) and estimated dose (J/cm) of visible light and blue light emitted from various electronic devices including smartphones, tablets and computers.
View Article and Find Full Text PDFClin Cosmet Investig Dermatol
January 2025
Division of Dermatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
Lymphomatoid papulosis (LyP) is currently categorized as a primary lymphoproliferative disorder that follows a chronic, recurrent clinical course. The diagnosis of LyP is mainly based on clinical presentation and histopathological correlation. Six subtypes of LyP have been described and recognized, each with different histological features and sometimes distinct clinical presentations.
View Article and Find Full Text PDFPerspect Clin Res
August 2024
Centre for Digital Health, Artificial Intelligence, Research and Training, Basaweshwara Medical College and Hospital, Chitradurga, Karnataka, India.
Aim: The study aimed to determine the incidence of adverse drug reactions (ADRs) among newly diagnosed tuberculosis (TB) patients receiving daily drug regimen with fixed-dose combination treatment under the National Tuberculosis Elimination Program.
Materials And Methods: A community-based prospective cohort study was carried out in the Udupi district. Over 12 months, all newly diagnosed TB patients of either gender were included from 63 primary health centers and 6 community health centers, and ADRs were recorded by personal interviews.
Mol Nutr Food Res
January 2025
Laboratory of Biochemistry and Environmental Toxicology, Badji Mokhtar-Annaba University, Annaba, Algeria.
This study investigated the chemopreventive mechanisms of fish oil (FO) at different doses and administration routes in skin carcinogenesis induced by 7,12-dimethylbenz[a]anthracene (DMBA) and croton oil (CO) in Swiss albino mice. Seventy mice were divided into 10 groups, including controls and those receiving FO either orally or topically, with or without the carcinogenesis protocol. Warts were morphologically analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!