Obesity causes many reproductive dysfunctions such as reduced conception, infertility, and early pregnancy loss, and this is largely due to the negative effects of obesity on oocyte and embryo quality. In the present study, we employed single-cell RNA transcriptome sequencing to investigate the potential causes for the maternal obesity effects on mouse embryos. Our results showed that the 4-cell and morula/blastocyst rates were all significantly decreased during embryo development in obese mice. Genome-wide analysis indicated that obesity altered the expression of more than 1100 genes in 2-cell embryos, including the genes which were related to the p53 signaling pathway and apoptosis. Further analysis showed that the expression of 47 genes related to DNA damage was changed, and a positive γH2A signal and the altered expression of Rad51 and Tex15 were observed in the obese embryos. Obesity also affected histone methylation, shown by the decrease of the H3K4-me2 level. Besides this, we observed the occurrence of autophagy and apoptosis in the embryos of obese mice. There were 42 genes that were related to autophagy/apoptosis that showed aberrant expression, and the positive LC3 signal and the decrease of Clec16a, Rraga, and Atg10 level were also observed. In summary, our study suggested that obesity affected early embryonic development by inducing DNA damage, aberrant histone methylation, and autophagy levels in mice.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.30201DOI Listing

Publication Analysis

Top Keywords

histone methylation
12
maternal obesity
8
methylation autophagy
8
mouse embryos
8
embryos obesity
8
obese mice
8
altered expression
8
dna damage
8
level observed
8
obesity
7

Similar Publications

Cancer is one of the leading causes of morbidity and mortality worldwide. One of the primary causes of cancer development and progression is epigenetic dysregulation, which is a heritable modification that alters gene expression without changing the DNA sequence. Therefore, targeting these epigenetic changes has emerged as a promising therapeutic strategy.

View Article and Find Full Text PDF

Tetramethylammonium (TMA) is a ubiquitous cationic motif in biochemistry, found in the charged choline headgroup of membrane phospholipids and in tri-methylated lysine residues, which modulates histone-DNA interactions and impacts epigenetic mechanisms. TMA interactions with anionic species, particularly carboxylate groups of amino acid residues and extracellular sugars, are of substantial biological relevance, as these interactions mediate a wide range of cellular processes. This study investigates the molecular interactions between TMA and acetate, representing carboxylate-containing groups, using neutron scattering experiments complemented by force fields and molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Oxidation of dopamine can cause various side effects, which ultimately leads to cell death and contributes to Parkinson's disease (PD). To counteract dopamine oxidation, newly synthesized dopamine is quickly transported into vesicles via vesicular monoamine transporter 2 (VMAT2) for storage. VMAT2 expression is reduced in patients with PD, and studies have shown increased accumulation of dopamine oxidation byproducts and α-synuclein in animals with low VMAT2 expression.

View Article and Find Full Text PDF

Histone demethylases in autophagy and inflammation.

Cell Commun Signal

January 2025

School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China.

Autophagy dysfunction is associated with changes in autophagy-related genes. Various factors are connected to autophagy, and the mechanism regulating autophagy is highly complicated. Epigenetic changes, such as aberrant expression of histone demethylase, are actively associated not only with oncogenesis but also with inflammatory responses.

View Article and Find Full Text PDF

Emergence of fungal hybrids - potential threat to humans.

Microb Pathog

January 2025

Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, INDIA. Electronic address:

Fungal hybrids arise through the interbreeding of distinct species. This hybridization process fosters increased genetic diversity and the emergence of new traits. Mechanisms driving hybridization include the loss of heterozygosity, copy number variations, and horizontal gene transfer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!