Motivation: Histone post-translational modifications (PTMs) are involved in a variety of essential regulatory processes in the cell, including transcription control. Recent studies have shown that histone PTMs can be accurately predicted from the knowledge of transcription factor binding or DNase hypersensitivity data. Similarly, it has been shown that one can predict PTMs from the underlying DNA primary sequence.
Results: In this study, we introduce a deep learning architecture called DeepPTM for predicting histone PTMs from transcription factor binding data and the primary DNA sequence. Extensive experimental results show that our deep learning model outperforms the prediction accuracy of the model proposed in Benveniste et al. (PNAS 2014) and DeepHistone (BMC Genomics 2019). The competitive advantage of our framework lies in the synergistic use of deep learning combined with an effective pre-processing step. Our classification framework has also enabled the discovery that the knowledge of a small subset of transcription factors (which are histone-PTM and cell-type-specific) can provide almost the same prediction accuracy that can be obtained using all the transcription factors data.
Availabilityand Implementation: https://github.com/dDipankar/DeepPTM.
Supplementary Information: Supplementary data are available at Bioinformatics online.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bioinformatics/btaa1075 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Institute for Applied Mathematics, University of Bonn, Bonn, Germany.
Purpose: To quantify outer retina structural changes and define novel biomarkers of inherited retinal degeneration associated with biallelic mutations in RPE65 (RPE65-IRD) in patients before and after subretinal gene augmentation therapy with voretigene neparvovec (Luxturna).
Methods: Application of advanced deep learning for automated retinal layer segmentation, specifically tailored for RPE65-IRD. Quantification of five novel biomarkers for the ellipsoid zone (EZ): thickness, granularity, reflectivity, and intensity.
Methods Mol Biol
January 2025
Stowers Institute for Medical Research, Kansas City, MO, USA.
Understanding the spatial and temporal dynamics of gene expression is crucial for unraveling molecular mechanisms underlying various biological processes. While traditional methods have offered insights into gene expression patterns, they primarily focus on mature mRNA transcripts, lacking real-time visualization of newly synthesized or nascent transcription events. Recent advancements in monitoring nascent transcription in live cells provide valuable insights into transcriptional dynamics.
View Article and Find Full Text PDFRheumatol Int
January 2025
Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA.
Women are disproportionately affected by chronic autoimmune diseases (AD) like systemic lupus erythematosus (SLE), scleroderma, rheumatoid arthritis (RA), and Sjögren's syndrome. Traditional evaluations often underestimate the associated cardiovascular disease (CVD) and stroke risk in women having AD. Vitamin D deficiency increases susceptibility to these conditions.
View Article and Find Full Text PDFAnal Chem
January 2025
Institute of Artificial Intelligence, Xiamen University, Xiamen, Fujian, 361005, China.
Metabolite identification from 1D H NMR spectra is a major challenge in NMR-based metabolomics. This study introduces NMRformer, a Transformer-based deep learning framework for accurate peak assignment and metabolite identification in 1D H NMR spectroscopy. Unlike traditional approaches, NMRformer interprets spectra as sequences of spectral peaks and integrates a self-attention mechanism and peak height ratios directly into the Transformer encoder layer.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA.
Monolayer assembly of charged colloidal particles at liquid interfaces opens a new avenue for advancing the additive manufacturing of thin film materials and devices with tailored properties. In this study, we investigated the dynamics of electrosprayed colloidal particles at curved droplet interfaces through a combination of physics-based computational simulations and machine learning. We employed a novel mesh-constrained Brownian dynamics (BD) algorithm coupled with Ansys® electric field simulations to model the transport and assembly of charged particles on a non-spherical droplet surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!