Metal-organic frameworks (MOFs) have been extensively used in the fabrication of new advanced electrode materials for lithium ion batteries (LIBs). However, low-productivity and high-cost are some of the main challenges of MOF-derived electrodes. Herein, we report a simple solvothermal procedure to fabricate novel Fe4-based metal-organic clusters (Fe-MOCs) with their subsequent conversion to an S,N dual-doped carbon framework incorporating iron oxides under a N2 atmosphere (namely Fe2O3@Fe3O4-SNC). The as-prepared Fe2O3@Fe3O4-SNC composite, owing to the strong interaction between the dual-doped carbon and iron oxides, shows excellent lithium storage performance as an anode with high pseudocapacitance. Furthermore, DFT computational analyses confirm that the hybrid shows excellent adsorption ability with a low energy barrier due to strong electronic interactions between the iron oxides and S,N-doped carbon matrix. In addition, Fe2O3@Fe3O4-SNC-based LIB shows high energy and power densities at the full-cell level, confirming this synthesis strategy to be a promising approach towards MOC-derived electrode materials for their application in LIBs and beyond-lithium batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0nr07231a | DOI Listing |
Luminescence
January 2025
Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
Based on nitrogen and phosphorus co-doped carbon dots (NP-CDs), a direct, quick, and selective sensing probe for fluorometric detection of rutin has been developed. Utilizing ethylene diamine tetra acetic acid (EDTA) as a carbon and nitrogen source and diammonium hydrogen phosphate (NH)HPO as a nitrogen and phosphorus source. The NP-CDs were synthesized in less than 3 min with a straightforward one-step microwave pyrolysis process with a high quantum yield (63.
View Article and Find Full Text PDFSmall Methods
December 2024
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
This work reports boron and oxygen dual-doped carbon nitride nanotubes (B/O-CNNTs) prepared via a copolymerization process for electrocatalytic ammonia synthesis from nitrogen gas (NRR) and nitrate (NORR) sources, respectively. By adjusting the dosage of boron oxide precursor, the texture and content of B/O dual dopants and the coordination environment in the resulting 1D CNNTs can be tuned. The best B/O-CNNTs can achieve maximum Faradaic efficiencies of 35% and 96% at -1.
View Article and Find Full Text PDFFront Chem
November 2024
College of Aeronautical Engineering, Civil Aviation Flight University of China, Chengdu, China.
Introduction: The oxygen reduction reaction (ORR) is a crucial determinant of the energy transformation capacity of fuel cells. This study investigates the performance of N and B dual-doped carbon in ORR.
Methods: Six models using density functional theory (DFT) are developed to compare the performance of different doping strategies.
ACS Appl Mater Interfaces
November 2024
Department of Ocean Advanced Materials Convergence Engineering, Korea Maritime & Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
NH is a versatile solution for the storage and distribution of sustainable energy, offering high energy density and promising applications as a renewable hydrogen carrier. However, electrochemical NH synthesis under ambient conditions remains challenging, such as low selectivity and efficiency, owing to the inertness of N≡N and competing reactions. In this study, a catalyst (MoC/NFC) comprising molybdenum carbide evenly dispersed on carbon doped with N and F heteroatoms was successfully synthesized using liquid-phase plasma.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China. Electronic address:
Advancing the development of proficient bifunctional water splitting electrocatalysts and deciphering the underlying drivers of their performance are pivotal for accelerating the sustainable hydrogen energy sector. In this study, a novel Fe and P dual-doped cobalt molybdate electrocatalyst (P-FCMO@NF) is engineered in-situ on a nickel foam substrate that induces an archipelago-like amorphous-crystalline heterointerface as well as abundant oxygen vacancies (V) on the near-surface, in favor of the electron transport and enhancing the water splitting capability respectively. Consequently, P-FCMO@NF exhibits excellent electrocatalytic performance in 1 M KOH solution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!