We present a modularly applicable, red-shifted and self-reporting photodynamic covalent crosslinker, abbreviated qStyPy, that performs [2+2] cycloadditions upon irradiation with 470 nm in water. The rational design of qStyPy increases its hydrophilicity due to a permanent charge and features a broad emission in the far-red/near-infrared regime as a readout for the cycloadduct formation, rendering qStyPy suitable for biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cc07429b | DOI Listing |
Org Biomol Chem
October 2022
Department of Pharmacy, Ludwig-Maximilians-Universität, München, 5-13 Butenandtstrasse, München 81377, Germany.
Novel photoswitches offering features complementary to the well-established azobenzenes are increasingly driving high-precision research in cellular photopharmacology. Styrylthiazolium (StyTz) and styrylbenzothiazolium (StyBtz) are cellularly untested /-isomerisation photoswitches which are nearly isosteric to azobenzenes, but have distinct properties: including 60 nm red-shifted π → π* absorption, self-reporting fluorescence, → relaxation on typical biological timescales, and decent solubility (positive charge). We tested StyTz and StyBtz for their potential as photopharmaceutical scaffolds, by applying them to photocontrol microtubule dynamics.
View Article and Find Full Text PDFChem Commun (Camb)
January 2021
Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany. and Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany and Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany and A3BMS Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
We present a modularly applicable, red-shifted and self-reporting photodynamic covalent crosslinker, abbreviated qStyPy, that performs [2+2] cycloadditions upon irradiation with 470 nm in water. The rational design of qStyPy increases its hydrophilicity due to a permanent charge and features a broad emission in the far-red/near-infrared regime as a readout for the cycloadduct formation, rendering qStyPy suitable for biomedical applications.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2018
Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, China. Electronic address:
In this paper, a three-dimensional (3D) poly(lactic-co-glycolic acid) (PLGA)/silica colloidal crystal drug delivery system with sustained drug release and visualized release monitoring was developed. This system had employed silica colloidal crystal microparticles as template skeleton, PLGA as drug carrier and dexamethasone (DEX) as therapeutic agent. The fabrication of the microparticle-based system included droplet formation based-on microfluidics, silica nanoparticle self-assembly and layer-by-layer deposition of PLGA containing DEX.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!