Nanosheet-based MFI membranes, known to be highly selective for hydrocarbon isomer separations, exhibit an NH3/N2 mixture separation factor of 2236 with NH3 permeance of 1.1 × 10-6 mol m-2 s-1 Pa-1, and NH3/H2 separation factor of 307 with NH3 permeance of 2.3 × 10-6 mol m-2 s-1 Pa-1 at room temperature. Consistent with a competitive sorption-based separation, lower operating temperatures and higher pressures result in increased separation factor. At 323 K, with an equimolar mixed feed of NH3/N2, the fluxes and separation factors at 3 and 7 bar are 0.13 mol m-2 s-1 and 191, and 0.26 mol m-2 s-1 and 220, respectively. This performance compares favorably with that of other membranes and suggests that MFI membranes can be used in separation and purification processes involving mixtures of NH3/N2/H2 encountered in ammonia synthesis and utilization. The membranes also exhibit high performance for the separation of ethane, n-propane and n-butane from H2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cc07217f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!