Since its discovery as a bacterial adaptive immune system and its development for genome editing in eukaryotes, the CRISPR technology has revolutionized plant research and precision crop breeding. The CRISPR toolbox holds great promise in the production of crops with genetic disease resistance to increase agriculture resilience and reduce chemical crop protection with a strong impact on the environment and public health. In this review, we provide an extensive overview on recent breakthroughs in CRISPR technology, including the newly developed prime editing system that allows precision gene editing in plants. We present how each CRISPR tool can be selected for optimal use in accordance with its specific strengths and limitations, and illustrate how the CRISPR toolbox can foster the development of genetically pathogen-resistant crops for sustainable agriculture.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7747970 | PMC |
http://dx.doi.org/10.1016/j.xplc.2020.100102 | DOI Listing |
Biosci Microbiota Food Health
September 2024
Department of Agricultural Chemistry, Graduate School of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.
Although the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system has been extensively developed since its discovery for eukaryotic and prokaryotic genome editing and other genetic manipulations, there are still areas warranting improvement, especially regarding bacteria. In this study, BRD0539, a small-molecule inhibitor of Cas9 (SpCas9), was used to suppress the activity of the nuclease during genetic modification of , as well as to regulate CRISPR interference (CRISPRi). First, we developed and validated a CRISPR-SpCas9 system targeting the gene of .
View Article and Find Full Text PDFACS Synth Biol
January 2025
Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
We report here the use of antibody-DNA conjugates (Ab-DNA) to activate the collateral cleavage activity of the CRISPR-Cas12a enzyme. Our findings demonstrate that Ab-DNA conjugates effectively trigger the collateral cleavage activity of CRISPR-Cas12a, enabling the transduction of antibody-mediated recognition events into fluorescence outputs. We developed two different immunoassays using an Ab-DNA as activator of Cas12a: the CRISPR-based immunosensing assay (CIA) for detecting SARS-CoV-2 spike S protein, which shows superior sensitivity compared with the traditional enzyme-linked immunosorbent assay (ELISA), and the CRISPR-based immunomagnetic assay (CIMA).
View Article and Find Full Text PDFGenes Genomics
December 2024
School of Chemical Engineering and Biomolecular Engineering, Pusan National University, Busan, 46241, Republic of Korea.
Background: The genomes of publicly available electroactive Pseudomonas aeruginosa strains are currently limited to in-silico analyses. This study analyzed the electroactive Pseudomonas aeruginosa PBH03 genome using comparative in-silico studies for biotechnological applications.
Objective: Comparative in-silico and experimental analyses were conducted to identify the novel traits of P.
Plants (Basel)
November 2024
Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China.
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas have been recognized as powerful genome-editing tools in diverse eukaryotic species, including plants, and thus hold great promise for engineering virus resistance in plants. Nevertheless, further attention is required regarding various issues associated with applying new powerful technologies in the field. This mini-review focuses on the recent advances in using CRISPR/Cas9 and CRISPR/Cas13 systems to combat DNA and RNA viruses in plants.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Institute of Pharmacy and Molecular Biotechnology (IPMB), Faculty of Engineering Sciences, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany.
Light-controlled transcriptional activation is a commonly used optogenetic strategy that allows researchers to regulate gene expression with high spatiotemporal precision. The vast majority of existing tools are, however, limited to light-triggered induction of gene expression. Here, we inverted this mode of action and created optogenetic systems capable of efficiently terminating transcriptional activation in response to blue light.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!