DNA barcoding of coral reef fishes from Chuuk State, Micronesia.

Mitochondrial DNA B Resour

Department of Convergence Study on the Ocean Science and Technology Ocean Science and Technology School, Korea Maritime and Ocean University, Busan, Korea.

Published: November 2020

The fish diversity of Chuuk Micronesia is currently under threat due to rapid changes in the coral reef ecosystem. Thus, accurate fish identification using DNA barcodes is fundamental for exploring species biodiversity and resource protection. In this study, we analyzed 162 fish mitochondrial DNA cytochrome oxidase I (COI) barcodes from Chuuk Micronesia. Consequently, we identified 95 species from 53 genera in 26 families and seven orders. The average Kimura 2-parameter genetic distances within species, genera, families, and orders were calculated as 0.17%, 11.78%, 15.63%, and 21.90%, respectively. Also, we have utilized DNA barcodes to perform genetic divergence and phylogenetic analysis of families recognized as dominant groups in Chuuk State. Our findings confirm that DNA barcodes using COI are an effective approach in identifying coral reef fish species. We anticipate that the results of this study will provide baseline data for the protection of coral reef fish biodiversity at Chuuk Micronesia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671707PMC
http://dx.doi.org/10.1080/23802359.2020.1831981DOI Listing

Publication Analysis

Top Keywords

coral reef
16
chuuk micronesia
12
dna barcodes
12
chuuk state
8
species genera
8
genera families
8
families orders
8
reef fish
8
dna
5
chuuk
5

Similar Publications

The marine microbiome arouses an increasing interest, aimed at better understanding coral reef biodiversity, coral resilience, and identifying bioindicators of ecosystem health. The present study is a microbiome mining of three environmentally contrasted sites along the Hermitage fringing reef of La Réunion Island (Western Indian Ocean). This mining aims to identify bioindicators of reef health to assist managers in preserving the fringing reefs of La Réunion.

View Article and Find Full Text PDF

Early life stage bottleneck determines rates of coral recovery following severe disturbance.

Ecology

January 2025

Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, USA.

Understanding how foundation species recover from disturbances is key for predicting the future of ecosystems in the Anthropocene. Coral reefs are dynamic ecosystems that can undergo rapid declines in coral abundance following disturbances. Understanding why some reefs recover quickly from these disturbances whereas others recover slowly (or not at all) gives insight into the drivers of community resilience.

View Article and Find Full Text PDF

Herein, we describe a new species of perchlet found at depths of 100-125 meters in mesophotic coral ecosystems of the Maldives in the Indian Ocean. is unique in both morphology and coloration. The following combination of characters distinguishes it from all known congeners: dorsal fin X, 15; anal-fin rays III, 7; pectoral-fin rays 13 | 13 (13 | 12), all unbranched; principal caudal-fin rays 9 + 8; lateral line complete with 30-32 tubed scales; gill rakers 5 + 12; circumpeduncular scales 11-12; and absence of antrorse or retrorse spines on ventral margin of preopercle.

View Article and Find Full Text PDF

'Neither here nor there'? Meiofauna as an effective tool to evaluate the impacts of the 2019 mysterious oil spill in a Northeast Brazil coral reef.

Mar Pollut Bull

January 2025

Universidade Federal de Pernambuco, Programa de Pós-Graduação em Biologia Animal, Center for Biosciences, Av. Prof. Morais Rêgo s/n, Recife, Pernambuco 50670-420, Brazil; Universidade Federal de Pernambuco, Department of Zoology, Center for Biosciences, Av. Prof. Morais Rêgo s/n, Recife, Pernambuco 50670-420, Brazil. Electronic address:

During the last half of 2019, the Northeast coast of Brazil suffered from an extensive oil spill of unknown origin, and marine organisms in those areas were subjected to significant impacts. In situations like this, the contaminant effects can persist for varying periods. Oil contaminants, such as polycyclic aromatic hydrocarbons (PAHs), generally reduce taxa's abundance and diversity in benthic communities in areas with greater exposure to chemical components.

View Article and Find Full Text PDF

Light and dark biofilm adaptation impacts larval settlement in diverse coral species.

Environ Microbiome

January 2025

Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.

Background: Recovery of degraded coral reefs is reliant upon the recruitment of coral larvae, yet the mechanisms behind coral larval settlement are not well understood, especially for non-acroporid species. Biofilms associated with reef substrates, such as coral rubble or crustose coralline algae, can induce coral larval settlement; however, the specific biochemical cues and the microorganisms that produce them remain largely unknown. Here, we assessed larval settlement responses in five non-acroporid broadcast-spawning coral species in the families Merulinidae, Lobophyllidae and Poritidae to biofilms developed in aquaria for either one or two months under light and dark treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!