Characterization of the complete plastid genome of Chinese medicinal plant (Lamiaceae).

Mitochondrial DNA B Resour

Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd, Guangzhou, China.

Published: May 2020

The herb (Maximowicz) Kudô, which is widely distributed in China and its neighbor regions, is a well-known traditional Chinese medicinal plant. In this study, we characterized the complete plastid genome sequence of using Illumina sequencing data. The plastome is 152,676 bp in length and contains a typical quadripartite structure. The inverted repeat (IR), large-single copy (LSC) and small-single copy (SSC) regions each has 25,716 bp, 83,564 bp, and 17,680 bp. The genome contains 80 protein coding genes (PCGs), 30 transfer RNAs (tRNA), and four ribosomal RNAs (rRNA). The phylogenetic result indicates together with genera and formed tribe Ocimeae clade.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7510653PMC
http://dx.doi.org/10.1080/23802359.2020.1765429DOI Listing

Publication Analysis

Top Keywords

complete plastid
8
plastid genome
8
chinese medicinal
8
medicinal plant
8
characterization complete
4
genome chinese
4
plant lamiaceae
4
lamiaceae herb
4
herb maximowicz
4
maximowicz kudô
4

Similar Publications

Background: The frequent communication between African and Southeast Asian (SEA) countries has led to the risk of imported malaria cases in the China-Myanmar border (CMB) region. Therefore, tracing the origins of new malaria infections is important in the maintenance of malaria-free zones in this border region. A new genotyping tool based on a robust mitochondrial (mt) /apicoplast (apico) barcode was developed to estimate genetic diversity and infer the evolutionary history of Plasmodium falciparum across the major distribution ranges.

View Article and Find Full Text PDF

The massive increase in the amount of plastid genome data have allowed researchers to address a variety of evolutionary questions within a wide range of plant groups. While plastome structure is generally conserved, some angiosperm lineages exhibit structural changes. Such is the case of the megadiverse order Asterales, where rearrangements in plastome structure have been documented.

View Article and Find Full Text PDF

The complete chloroplast genomes and comparative study of the two tung trees of Vernicia (Euphorbiaceae).

BMC Genomics

December 2024

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China.

Background: Vernicia montana and V. fordii are economically important woody oil species in the Euphorbiaceae that have great industrial oil and ornamental greening properties, however, the wild resources of Vernicia trees have been reduced because of their habitat destruction. Considering the diverse economic and ecological importance of Vernicia species, it is important to collect more molecular data to determine the genetic differences between V.

View Article and Find Full Text PDF

Organelle genome assembly, annotation, and comparative analyses of two keystone species for wetlands worldwide.

Front Plant Sci

December 2024

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.

is a cosmopolitan aquatic plant genus that includes species with widespread global distributions. In previous studies, a revised molecular phylogeny was inferred using seven plastid loci from nine species across different geographic regions. By utilizing complete organellar genomes, we aim to provide a more comprehensive dataset that offers a robust phylogenetic signal for resolving species evolutionary relationships.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!