(Nyctaginaceae) is endemic to the Himalayas where it is used in traditional Tibetan folk medicine. In this study, we first presented the complete chloroplast genome of . Complete genome size of ranged from 154,348 to 154,388 bp. The length varied from 85,808 to 85,845 bp in the (large single-copy) LSC region, from 17,935 to 17,938 bp in the (small single-copy) SSC region, and from 25,302 to 25,303 bp in the inverted repeat (IR) region. The overall GC contents of the chloroplast genome sequences were around 36%. Annotation analysis revealed a total of 112 genes, including 78 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. The phylogenetic analysis with three samples and five other Nyctaginaceae species showed that including two species was clustered with high bootstrap support. The complete chloroplast genome sequences obtained in this study will provide valuable data for wider studies into the phylogenetics and conservation biology of .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7707768 | PMC |
http://dx.doi.org/10.1080/23802359.2019.1688116 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Molecular Genetics, Institute of Biology, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin 10115, Germany.
The chloroplast genome encodes key components of the photosynthetic light reaction machinery as well as the large subunit of the enzyme central for carbon fixation, Ribulose-1,5-bisphosphat-carboxylase/-oxygenase (RuBisCo). Its expression is predominantly regulated posttranscriptionally, with nuclear-encoded RNA-binding proteins (RBPs) playing a key role. Mutants of chloroplast gene expression factors often exhibit impaired chloroplast biogenesis, especially in cold conditions.
View Article and Find Full Text PDFBio Protoc
January 2025
Biochemistry Department, Western University, London, Canada.
Chloroplast genomes present an alternative strategy for large-scale engineering of photosynthetic eukaryotes. Prior to our work, the chloroplast genomes of (204 kb) and (140 kb) had been cloned using bacterial and yeast artificial chromosome (BAC/YAC) libraries, respectively. These methods lack design flexibility as they are reliant upon the random capture of genomic fragments during BAC/YAC library creation; additionally, both demonstrated a low efficiency (≤ 10%) for correct assembly of the genome in yeast.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain.
Photosynthetic microalgae are promising green cell factories for the sustainable production of high-value chemicals and biopharmaceuticals. The chloroplast organelle is being developed as a chassis for synthetic biology as it contains its own genome (the plastome) and some interesting advantages, such as high recombinant protein titers and a diverse and dynamic metabolism. However, chloroplast engineering is currently hampered by the lack of standardized cloning tools and Design-Build-Test-Learn workflows to ease genomic and metabolic engineering.
View Article and Find Full Text PDFTree Physiol
January 2025
Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China.
Modulation of stomatal development and movement is a promising approach for creating water-conserving plants. Here, we identified and characterized the PagHCF106 gene of poplar (Populus alba × Populus glandulosa). The PagHCF106 protein localized predominantly to the chloroplast, and the PagHCF106 gene exhibited tissue-specific expression pattern.
View Article and Find Full Text PDFMol Biol Rep
January 2025
School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China.
Background: Paeonia lactiflora Pall., a member of Paeoniaceae family, is a medicinal herb widely used in traditional Chinese medicine. Chloroplasts are multifunctional organelles containing distinct genetic material.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!