The full-length mitochondrial genome of the Fernholm's hagfish, (Myxini; Myxiniformes; Myxinidae) was analyzed by the primer walking method. Its mitogenome was 18,862 bp in total length and was composed of 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes. The gene content and order were congruent with those of typical vertebrates. In the phylogenetic tree, showed the closest relationship to in the same genus and subfamily and well separated from the other hagfish in the subfamily Eptatretinae.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7707226PMC
http://dx.doi.org/10.1080/23802359.2019.1674731DOI Listing

Publication Analysis

Top Keywords

full-length mitochondrial
8
mitochondrial genome
8
genome fernholm's
8
fernholm's hagfish
8
hagfish myxini
8
myxini myxiniformes
8
myxiniformes myxinidae
8
rna genes
8
myxinidae full-length
4
myxinidae analyzed
4

Similar Publications

The human mitochondrial nicotinamide nucleotide transhydrogenase (NNT) uses the proton motive force to drive hydride transfer from NADH to NADP and is a major contributor to the generation of mitochondrial NADPH. NNT plays a critical role in maintaining cellular redox balance. NNT-deficiency results in oxidative damage and its absence results in familial glucocorticoid deficiency.

View Article and Find Full Text PDF

The functional activation of the androgen receptor (AR) and its interplay with the aberrant Hh/Gli cascade are pivotal in the progression of castration-resistant prostate cancer (CRPC) and resistance to AR-targeted therapies. Our study unveiled a novel role of the truncated form of Gli (t-Gli3) in advancing CRPC. Investigation into Gli3 regulation revealed a Smo-independent mechanism for its activation.

View Article and Find Full Text PDF

Protocol for mitochondrial variant enrichment from single-cell RNA sequencing using MAESTER.

STAR Protoc

January 2025

Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA. Electronic address:

Single-cell RNA sequencing (scRNA-seq) enables detailed characterization of cell states but often lacks insights into tissue clonal structures. Here, we present a protocol to probe cell states and clonal information simultaneously by enriching mitochondrial DNA (mtDNA) variants from 3'-barcoded full-length cDNA. We describe steps for input library preparation, mtDNA enrichment, PCR product cleanup, and paired-end sequencing.

View Article and Find Full Text PDF

Glucose Transporter 1 Deficiency Impairs Glucose Metabolism and Barrier Induction in Human Induced Pluripotent Stem Cell-Derived Astrocytes.

J Cell Physiol

January 2025

Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.

Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.

View Article and Find Full Text PDF

Huntington's disease (HD), a neurodegenerative disease, affects approximately 30,000 people in the United States, with 200,000 more at risk. Mitochondrial dysfunction caused by mutant huntingtin (mHTT) drives early HD pathophysiology. mHTT binds the translocase of mitochondrial inner membrane (TIM23) complex, inhibiting mitochondrial protein import and altering the mitochondrial proteome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!