The complete mitochondrial genome of marmoset rats (Rodentia: Muridae).

Mitochondrial DNA B Resour

State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.

Published: July 2019

AI Article Synopsis

Article Abstract

The marmoset rats () is a rarely investigated rodent. It occupies important ecological niche and phylogenetic position. The complete mitochondrial genome of was determined for the first time by long PCR and second-generation sequencing. The results showed that the entire mitogenome of was 16,316 bp long (deposited in GenBank with accession number MK850463). The gene order and orientation were the same as the most rodent. Only tRNA (TTT) and tRNA (AGN) of 22 transfer RNAs showed atypical cloverleaf structures, lacking a dihydrouridine (DHU) arm. The newly added mitogenome will benefit population genetic and phylogenetic studies in the rodent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7687551PMC
http://dx.doi.org/10.1080/23802359.2019.1627938DOI Listing

Publication Analysis

Top Keywords

complete mitochondrial
8
mitochondrial genome
8
marmoset rats
8
genome marmoset
4
rats rodentia
4
rodentia muridae
4
muridae marmoset
4
rats rarely
4
rarely investigated
4
investigated rodent
4

Similar Publications

Objective: To investigate the effects of Astragalus polysaccharide (APS) on skeletal muscle structure and function in D-galactose (D-gal)-induced C57BL/6J mice.

Methods: Eighteen male C57BL/6J mice of specific pathogen-free (SPF) grade, aged 8 weeks, were selected and divided into three groups: a control group (0.9% saline gavage for 16 weeks), a D-gal group (subcutaneous injection of 200 mg/kg D-galactose in the upper neck region, once daily for 8 weeks), and a D-gal + APS group (subcutaneous injection of 200 mg/kg D-galactose, once daily for 8 weeks, with concurrent administration of 100 mg/kg APS by gavage for 8 weeks).

View Article and Find Full Text PDF

This research aimed to characterize the mitochondrial genome of the Ghoongroo (GH) pig, a notable breed in India, along with its crossbred varieties, to elucidate their matrilineal components, evolutionary history, and implications for conservation. Seven pigs (5 GH, 2 crossbred, namely Rani and Asha) were sequenced for complete mitochondrial genome, while 24 pigs (11 GH, 6 Rani, and 7 Asha) were sequenced for the complete D-loop of the mitochondrial genome. The genome size of these pigs was determined to be 16,690 bp.

View Article and Find Full Text PDF

Complete mitochondrial genome assembly and comparative analysis of Colocasia esculenta.

BMC Plant Biol

January 2025

Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China.

Colocasia esculenta ranks as the fifth most important tuber crop and is known for its high nutritional and medicinal value. However, there is no research on its mitochondrial genome, hindering in-depth exploration of its genomic resources and genetic relationships. Using second- and third-generation sequencing technologies, we assembled and annotated the mitogenome of C.

View Article and Find Full Text PDF

Protocol for mitochondrial variant enrichment from single-cell RNA sequencing using MAESTER.

STAR Protoc

January 2025

Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA. Electronic address:

Single-cell RNA sequencing (scRNA-seq) enables detailed characterization of cell states but often lacks insights into tissue clonal structures. Here, we present a protocol to probe cell states and clonal information simultaneously by enriching mitochondrial DNA (mtDNA) variants from 3'-barcoded full-length cDNA. We describe steps for input library preparation, mtDNA enrichment, PCR product cleanup, and paired-end sequencing.

View Article and Find Full Text PDF

Background: The persistently high mortality and morbidity rates of hepatocellular carcinoma (HCC) remain a global concern. Notably, the disruptions in mitochondrial cholesterol metabolism (MCM) play a pivotal role in the progression and development of HCC, underscoring the significance of this metabolic pathway in the disease's etiology. The purpose of this research was to investigate genes associated with MCM and develop a model for predicting the prognostic features of patients with HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!