A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Applying a gene-suite approach to examine the physiological status of wild-caught walleye (). | LitMetric

Molecular techniques have been increasingly used in a conservation physiology framework to provide valuable information regarding the mechanisms underlying responses of wild organisms to environmental and anthropogenic stressors. In the present study, we developed a reference gill transcriptome for walleye (), allowing us to pair a gene-suite approach (i.e. multiple genes across multiple cellular processes) with multivariate statistics to examine the physiological status of wild-caught walleye. For molecular analyses of wild fish, the gill is a useful target for conservation studies, not only because of its importance as an indicator of the physiological status of fish but also because it can be biopsied non-lethally. Walleye were non-lethally sampled following short- (~1.5 months) and long-term (~3.5 months) confinement in the Delta Marsh, which is located south of Lake Manitoba in Manitoba, Canada. Large-bodied walleye are confined in the Delta Marsh from late April to early August by exclusion screens used to protect the marsh from invasive common carp (), exposing fish to potentially stressful water quality conditions. Principal components analysis revealed patterns of transcript abundance consistent with exposure of fish to increasingly high temperature and low oxygen conditions with longer holding in the marsh. For example, longer-term confinement in the marsh was associated with increases in the mRNA levels of heat shock proteins and a shift in the mRNA abundance of aerobic to anaerobic metabolic genes. Overall, the results of the present study suggest that walleye confined in the Delta Marsh may be exhibiting sub-lethal responses to high temperature and low oxygen conditions. These results provide valuable information for managers invested in mediating impacts to a local species of conservation concern. More broadly, we highlight the usefulness of pairing transcriptomic techniques with multivariate statistics to address potential confounding factors that can affect measured physiological responses of wild-caught fish.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7745715PMC
http://dx.doi.org/10.1093/conphys/coaa099DOI Listing

Publication Analysis

Top Keywords

physiological status
12
delta marsh
12
gene-suite approach
8
examine physiological
8
status wild-caught
8
wild-caught walleye
8
walleye molecular
8
provide valuable
8
multivariate statistics
8
walleye confined
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!