We recorded the metazoan parasite communities in three endemic cichlids (, and . ) collected between November 2008 and July 2009 in the upper Grijalva River Basin (GRB), Chiapas, Mexico. In total, 6,287 individual parasites belonging to 18 taxa (1 monogenean, 6 digeneans, 1 cestode, 4 nematodes, 2 acanthocephalans, 1 hirudinean, 2 copepods and 1 pentastomid) were found. Eleven metazoans were adult forms and 7 larvae; moreover, 14 were endoparasites and 4 ectoparasites. Sixteen parasite taxa represent new geographical and host records. The helminth community in the three cichlids was characterized by higher number of generalists than specialists, as well as a higher proportion of autogenics than allogenics. The metazoan parasites showed prevalence and mean abundances moderate to high. The infracommunities and component community of metazoan parasites had low diversity, richness, and number of individuals and are similar to those reported for other cichlids in Southeastern Mexico, characterized by the presence of typical parasites of cichlids, with a high number of digeneans and generalist parasites. We report the introduced Asian parasitic copepod parasitizing endangered or threatened endemic cichlids in the upper GRB. This copepod have been widespread in other freshwater fish species, mainly in Asia (China, India, Japan, Russia, Taiwan), Europe (France, Hungary, Italy, Turkey), and America (Cuba, Mexico, Peru, United States).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7734670 | PMC |
http://dx.doi.org/10.2478/helm-2020-0041 | DOI Listing |
BMC Biol
January 2025
Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium.
Background: Stress responses are key the survival of parasites and, consequently, also the evolutionary success of these organisms. Despite this importance, our understanding of the evolution of molecular pathways dealing with environmental stressors in parasitic animals remains limited. Here, we tested the link between adaptive evolution of parasite stress response genes and their ecological diversity and species richness.
View Article and Find Full Text PDFCommun Biol
January 2025
The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of Norway, Tromsø, Norway.
Pseudomonas aeruginosa is an emergent threat due to the antimicrobial resistance crisis. Bacteriophages (phages) are promising agents for phage therapy approaches against P. aeruginosa.
View Article and Find Full Text PDFParasitol Res
December 2024
Institute of Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany.
Pluripotent somatic stem cells are the drivers of unlimited growth of Echinococcus multilocularis metacestode tissue within the organs of the intermediate host. To understand the dynamics of parasite proliferation within the host, it is therefore important to delineate basic mechanisms of Echinococcus stem cell maintenance and differentiation. We herein undertake the first step towards characterizing the role of an evolutionarily old metazoan cell-cell communication system, delta/notch signalling, in Echinococcus cell fate decisions.
View Article and Find Full Text PDFCurr Biol
December 2024
Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Essig Museum of Entomology, University of California, Berkeley, Berkeley, CA 94720, USA. Electronic address:
Metazoan parasites have played a major role in shaping innate immunity in animals. Insect hosts and parasitoid wasps are excellent models for illuminating how animal innate immune systems have evolved to neutralize these enemies. One such strategy relies on symbioses between insects and intracellular bacteria that express phage-encoded toxins.
View Article and Find Full Text PDFSci Total Environ
January 2025
Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany.
Increasing chemical pollution calls for a closer look at ecologically highly relevant host-parasite interactions to understand the persistence of organisms and populations in a polluted environment. The impact of chemical exposure within the host-parasite interactions - particularly the distinctive bioaccumulation behavior of organic micropollutants - can substantially influence the persistence of a species. This significance has been emphasized by previous research showing a higher tolerance of Gammarus roeselii (Amphipoda, Crustacea) infected with acanthocephalans during acute exposure to a pyrethroid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!