A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Long non-coding RNA SNHG9 inhibits ovarian cancer progression by sponging microRNA-214-5p. | LitMetric

Long non-coding RNA SNHG9 inhibits ovarian cancer progression by sponging microRNA-214-5p.

Oncol Lett

Department of Obstetrics and Gynecology, The Second People's Hospital of Taizhou City, Taizhou, Jiangsu 225300, P.R. China.

Published: February 2021

Ovarian cancer ranks 7th among the most common cancer types affecting women worldwide. A number of studies have confirmed that multiple long non-coding RNAs participate in the occurrence and progression of ovarian cancer. Small nucleolar RNA host gene 9 (SNHG9) serves a role in the progression of glioblastoma and pancreatic cancer. However, the specific biological function of SNHG9 in ovarian cancer has not yet been fully investigated. The present study aimed to determine the biological role and potential molecular mechanism underlying the influence of SNHG9 in ovarian cancer. SNHG9 expression in ovarian cancer cell lines and tissues were measured via reverse transcription-quantitative PCR analysis, and cell proliferation was detected via Cell Counting Kit-8 and colony formation assays. Flow cytometry was performed to assess cell cycle progression, and Transwell and wound healing assays were performed to assess cell invasion and migration abilities. Bioinformatics software was utilized to determine the target genes of SNHG9, which were subsequently verified via dual-luciferase reporter and RNA immunoprecipitation assays. The results demonstrated that SNHG9 expression was remarkably lower in ovarian cancer cell lines and tissues compared with the negative controls. Cell function assays demonstrated that decreased SNHG9 expression notably induced the migration, colony formation, proliferation and invasiveness of ovarian cancer cells. Furthermore, the inhibitory effect of SNHG9 on the migration, colony formation, proliferation and invasion of ovarian cancer cells was partially reversed by miR-214-5p upregulation. Thus, taken together, the current results suggest that SNHG9 may serve as a tumor suppressor gene in ovarian cancer by regulating the miR-214-5p/cryptochrome circadian regulator 2 axis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7723070PMC
http://dx.doi.org/10.3892/ol.2020.12341DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
40
cancer
12
snhg9 expression
12
colony formation
12
snhg9
10
ovarian
10
long non-coding
8
snhg9 ovarian
8
cancer cell
8
cell lines
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!