Nitrogen (N) and phosphorus (P) play important roles in many aspects of plant biology. The allocation of N and P in plant vegetative organs (i.e., leaves, stems, and fine roots) is critical to the regulation of plant growth and development. However, how these elements are allocated in seeds is unclear. The aim of this study was to explore the N and P allocation strategies of seeds in an alpine meadow along an altitudinal gradient. We measured the seed N and P contents of 253 herbaceous species in 37 families along an altitudinal gradient (2,000-4,200 m) in the east Tibetan alpine meadow. The geometric means of seed N and P concentrations and N:P ratios were 34.81 mg g, 5.06 mg g, and 6.88, respectively. Seed N and P concentrations varied across major taxonomic groups and among different altitude zones. N:P ratios showed no significant variations among different taxonomic groups with the exception of N-fixing species. The numerical value of the scaling exponent of seed N vs. P was 0.73, thus approaching 3/4, across the entire data set, but varied significantly across major taxonomic groups. In addition, the numerical value of the scaling exponent of N vs. P declined from 0.88 in the high altitude zone to 0.63 in the low altitude zone. These results indicate that the variations in the numerical value of the scaling exponent governing the seed N vs. P scaling relationship varies as a function of major taxonomic groups and among different altitude zones. We speculate that this variation reflects different adaptive strategies for survival and germination in an alpine meadow. If true, the data presented here advance our understanding of plant seed allocation strategies, and have important implications for modeling early plant growth and development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7756027 | PMC |
http://dx.doi.org/10.3389/fpls.2020.614644 | DOI Listing |
Plants (Basel)
December 2024
College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China.
There are discrepancies that exist in the effects of different land uses on soil organic carbon (SOC) and soil microbial carbon metabolism functions. However, the impact of land-use type changes on soil microbial carbon metabolism in alpine grassland arid areas is not well understood, hindering our understanding of the carbon cycling processes in these ecosystems. Therefore, we chose three types of land use (continuous reclamation of grassland (RG), abandoned grassland (AG), and natural grazing grassland (GG)) to study the microbial carbon metabolism and its driving factors by the Biolog-ECO method.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
Aluminum (Al) toxicity in acidic soils poses significant challenges to crop growth and development. However, the response mechanism of Shatian pomelo ( 'Shatian Yu') roots to Al toxicity remains poorly understood. This study employed root phenotype analysis, physiological response index measurement, root transcriptome analysis, and quantitative PCR (qPCR) validation to investigate the effects of Al toxicity on Shatian pomelo roots.
View Article and Find Full Text PDFBiology (Basel)
December 2024
Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China.
The dramatic changes in precipitation patterns on the Tibetan Plateau affected the carbon-sequestering microbial communities within wetland ecosystems, which were closely related to the responses and adaptation mechanisms of alpine wetland ecosystems to climate change. This study focused on wetland soils subjected to different precipitation gradient treatments and employed high-throughput sequencing technology to analyze the soil cbbM carbon-sequestering microbial communities. The results indicated that Proteobacteria were the dominant microbial community responsible for carbon sequestration in the Wayan Mountain wetland.
View Article and Find Full Text PDFSci Total Environ
January 2025
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
In recent decades significant forest expansion into treeless alpine zones has been observed across global mountain ranges, including the Alps, driven by a complex interplay of global warming and land-use changes. The upward shift of treelines has far-reaching implications for ecosystem functioning, biodiversity, and biogeochemical cycles. However, climate variables alone account for only a fraction of treeline dynamics, highlighting substantial research gaps concerning the influence of non-climatic factors.
View Article and Find Full Text PDFJ Environ Manage
January 2025
State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China. Electronic address:
Small burrowing herbivores play a crucial role in maintaining structure and function of grassland ecosystems. To date, our understanding of whether practicing ecological uniqueness can enhance plant diversity conservation under small herbivore disturbances remains limited. Here, we investigate the ecological uniqueness of plant communities, which include habitats disturbed and undisturbed by plateau pikas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!