A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Linking Leaf Water Potential, Photosynthesis and Chlorophyll Loss With Mechanisms of Photo- and Antioxidant Protection in Juvenile Olive Trees Subjected to Severe Drought. | LitMetric

The identification of drought-tolerant olive tree genotypes has become an urgent requirement to develop sustainable agriculture in dry lands. However, physiological markers linking drought tolerance with mechanistic effects operating at the cellular level are still lacking, in particular under severe stress, despite the urgent need to develop these tools in the current frame of global change. In this context, 1-year-old olive plants growing in the greenhouse and with a high intra-specific variability (using various genotypes obtained either from cuttings or seeds) were evaluated for drought tolerance under severe stress. Growth, plant water status, net photosynthesis rates, chlorophyll contents and the extent of photo- and antioxidant defenses (including the de-epoxidation state of the xanthophyll cycle, and the contents of carotenoids and vitamin E) were evaluated under well-watered conditions and severe stress (by withholding water for 60 days). Plants were able to continue photosynthesizing under severe stress, even at very low leaf water potential of -4 to -6 MPa. This ability was achieved, at least in part, by the activation of photo- and antioxidant mechanisms, including not only increased xanthophyll cycle de-epoxidation, but also enhanced α-tocopherol contents. "Zarrazi" (obtained from seeds) and "Chemlali" (obtained from cuttings) showed better performance under severe water stress compared to the other genotypes, which was associated to their ability to trigger a higher antioxidant protection. It is concluded that (i) drought tolerance among the various genotypes tested is associated with antioxidant protection in olive trees, (ii) the extent of xanthophyll cycle de-epoxidation is strongly inversely related to photosynthetic rates, and (iii) vitamin E accumulation is sharply induced upon severe chlorophyll degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7759475PMC
http://dx.doi.org/10.3389/fpls.2020.614144DOI Listing

Publication Analysis

Top Keywords

severe stress
16
photo- antioxidant
12
antioxidant protection
12
drought tolerance
12
xanthophyll cycle
12
leaf water
8
water potential
8
olive trees
8
cycle de-epoxidation
8
severe
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!