Rock powders are low-cost potential sources of most of the nutrients required by higher plants for growth and development. However, slow dissolution rates of minerals represent an obstacle to the widespread use of rock powders in agriculture. Rhizosphere processes and biological weathering may further enhance mineral dissolution since the interaction between minerals, plants, and bacteria results in the release of macro- and micronutrients into the soil solution. Plants are important agents in this process acting directly in the mineral dissolution or sustaining a wide diversity of weathering microorganisms in the root environment. Meanwhile, root microorganisms promote mineral dissolution by producing complexing ligands (siderophores and organic acids), affecting the pH (via organic or inorganic acid production), or performing redox reactions. Besides that, a wide variety of rhizosphere bacteria and fungi could also promote plant development directly, synergistically contributing to the weathering activity performed by plants. The inoculation of weathering bacteria in soil or plants, especially combined with the use of crushed rocks, can increase soil fertility and improve crop production. This approach is more sustainable than conventional fertilization practices, which may contribute to reducing climate change linked to agricultural activity. Besides, it could decrease the dependency of developing countries on imported fertilizers, thus improving local development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7759553 | PMC |
http://dx.doi.org/10.3389/fpls.2020.590774 | DOI Listing |
Environ Res
January 2025
College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China. Electronic address:
Internal nutrient cycling, especially phosphorus (P), is of great influence in lake eutrophication. Dissolved organic matter (DOM) and microorganisms are ubiquitous in the sediments and closely associated with P-cycling. However, the underlying interactions of DOM, microorganisms and P in floodplain lake area with different hydrological characteristics remain scarce.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Institute for Sustainability, Energy and Environment, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
Critical source areas (CSAs) can act as a source of phosphorus (P) in surface waters by releasing soil P to porewater during frequent rainfall events. The extent of P release under short-term, frequent submergence has not been systematically studied in CSAs in New Zealand. A study was conducted to explore the potential of three contrasting dairy and sheep/beef farm soils (Recent, Pallic and Allophanic soils) to release P to porewater and pondwater under short-term and frequent submergence.
View Article and Find Full Text PDFEnergy Fuels
January 2025
Geothermal Energy and Geofluids Group, Institute of Geophysics, Department of Earth and Planetary Sciences, ETH Zurich, Zurich 8092, Switzerland.
Carbon capture and storage (CCS) and CO-based geothermal energy are promising technologies for reducing CO emissions and mitigating climate change. Safe implementation of these technologies requires an understanding of how CO interacts with fluids and rocks at depth, particularly under elevated pressure and temperature. While CO-bearing aqueous solutions in geological reservoirs have been extensively studied, the chemical behavior of water-bearing supercritical CO remains largely overlooked by academics and practitioners alike.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Hubei Three Gorges Laboratory, Yichang 443000, China.
With the global surge in lithium-ion batteries (LIBs), recycling spent LIBs has become an essential and urgent research area. In the context of global efforts to promote sustainable development, and achieve energy conservation and emission reduction, advancing recycling technologies that efficiently recover critical metals like Ni, Co, Mn, and Li is crucial. Herein, a novel and environmentally friendly simplified process for selectively extracting critical metals from the mixed electrode materials of spent LIBs is proposed for the first time.
View Article and Find Full Text PDFLangmuir
January 2025
State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Yunnan Key Laboratory of Green Separation and Enrichment of Strategic Mineral Resources, Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China.
The accumulation of phosphogypsum (PG) in the phosphorus chemical industry poses significant environmental challenges. Therefore, developing a harmless utilization method is crucial for alleviating these burdens and promoting sustainable industry practices. In this study, PG was used as a flotation inhibitor, enabling the flotation separation of apatite and dolomite based on the main components and dissolution behavior of PG.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!