The pathological mechanisms that lead to the onset and reactivation of celiac disease (CD) remain largely unknown. While gluten free diet (GFD) improves the intestinal damage and associated clinical symptoms in majority of cases, it falls short of providing full recovery. Additionally, late or misdiagnosis is also common as CD presents with a wide range of symptoms. Clear understanding of CD pathogenesis is thus critical to address both diagnostic and treatment concerns. We aimed to study the molecular impact of short gluten exposure in GFD treated CD patients, as well as identify biological pathways that remain altered constitutively in CD regardless of treatment. Using RNAseq profiling of PBMC samples collected from treated CD patients and gluten challenged patient and healthy controls, we explored the peripheral transcriptome in CD patients following a short gluten exposure. Short gluten exposure of just three days was enough to alter the genome-wide PBMC transcriptome of patients. Pathway analysis revealed gluten-induced upregulation of mainly immune response related pathways, both innate and adaptive, in CD patients. We evaluated the perturbation of biological pathways in sample-specific manner. Compared to gluten exposed healthy controls, pathways related to tight junction, olfactory transduction, metabolism of unsaturated fatty acids (such as arachidonic acid), metabolism of amino acids (such as cysteine and glutamate), and microbial infection were constitutively altered in CD patients regardless of treatment, while GFD treatment appears to mostly normalize immune response pathways to "healthy" state. Upstream regulator prediction analysis using differentially expressed genes identified constitutively activated regulators relatively proximal to previously reported CD associated loci, particularly SMARCA4 on 19p13.2 and CSF2 on 5q31. We also found constitutively upregulated genes in CD that are in CD associated genetic loci such as MEF2BNB-MEF2B (BORCS8-MEF2B) on 19p13.11 and CSTB on 21q22.3. RNAseq revealed strong effects of short oral gluten challenge on whole PBMC fraction and constitutively altered pathways in CD PBMC suggesting important factors other than gluten in CD pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7759501PMC
http://dx.doi.org/10.3389/fimmu.2020.594243DOI Listing

Publication Analysis

Top Keywords

short gluten
12
gluten exposure
12
gluten challenge
8
challenge pbmc
8
celiac disease
8
gluten
8
treated patients
8
biological pathways
8
healthy controls
8
transcriptome patients
8

Similar Publications

The effects of wheat bran dietary fiber (WBDF) treated by air flow micro-pulverization on gelatinization, thermal, rheological, structural properties, and in vitro digestion of wheat starch (WS) were investigated. Different particle sizes of WBDF were obtained by conventional knife grinding and airflow micro-grinding. Compared with conventional knife grinding, the particle size of WBDF treated by air flow micro-pulverization decreased, the particle size distribution was concentrated at small particle sizes, the specific surface area increased, and the hydraulic and oil-holding power decreased, which was mainly related to the change of WBDF spatial structure and the increase of solubility.

View Article and Find Full Text PDF

Amaranth is an ancient crop of the family Amaranthaceae, but it is fairly new to Russia. Its seeds and leaf biomass contain a high-quality gluten-free protein, fatty acids, squalene (a polyunsaturated hydrocarbon), flavonoids, vitamins, and minerals. A comprehensive study of amaranth, enhancement of its breeding, and development of new cultivars will contribute to food quality improvement through the use of plant raw materials enriched for wholesome and highly nutritious components.

View Article and Find Full Text PDF

Deep eutectic solvent-assisted starch acetylation within stale bread particles to improve water resistance.

Int J Biol Macromol

December 2024

Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark; Food Technology Area, Department of Agricultural Engineering, University of Valladolid, Spain. Electronic address:

Building up from our previous findings on deep eutectic solvents (DES) as reaction promoters for the acetylation of pure wheat starch, the current work explored combinations of reaction time, temperature and acetic anhydride: bread molar ratios to acetylate macromolecules within bread particles relying solely on macromolecule solvation and the slightly basic environment provided by the eutectic mixture. High degree of substitution with acyl groups (DS, 0.73-1.

View Article and Find Full Text PDF

Multi-scale structure and digestible process of wheat starch as affected by distribution behavior of rice glutelin amyloid fibril aggregates during gelatinization and digestion.

Int J Biol Macromol

January 2025

School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China. Electronic address:

The effect of distribution behaviors of rice glutelin amyloid fibril aggregates (RAFA) on the structures and digestible process of wheat starch was investigated, and the interaction was revealed by molecular dynamics simulations. Rice glutelin (RG)/RAFA enhanced the long-range ordered structure of starch, and the relative crystallinity of gelatinized RAFA-wheat starch reached 14.35 %.

View Article and Find Full Text PDF

Unveiling the structural and physico-chemical properties of glutenin macropolymer under frozen storage: Studies on experiments and molecular dynamics simulation.

Food Res Int

December 2024

State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China. Electronic address:

Glutenin macropolymer (GMP) plays an important role in wheat gluten fractions, and extensively presents in the frozen dough. However, the effects of freezing treatment on GMP remain not abundantly understood. In this study, we investigated the structure and physico-chemical properties of GMP under frozen storage through experimental methods and bioinformatics algorithms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!