Does an Over-Connected Visual Cortex Undermine Efforts to Stay Sober After Treatment for Alcohol Use Disorder?

Front Psychiatry

Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States.

Published: December 2020

A fine-tuned interplay of highly synchronized activity within and between the brain's communities is a crucial feature of the brain's functional organization. We wanted to investigate in individuals with alcohol use disorder (AUD) the degree to which the interplay of the brain's community-architecture and the extended brain reward system (eBRS) is affected by drinking status (relapse or abstinence). We used Graph Theory Analysis of resting-state fMRI data from treatment seekers at 1 month of abstinence to model the brain's intrinsic community configuration and their follow-up data as abstainers or relapsers 3 months later to quantify the degree of global across-community interaction between the eBRS and the intrinsic communities at both timepoints. After 1 month of abstinence, the ventromedial PFC in particular showed a significantly higher global across-community interaction in the 22 future relapsers when compared to 30 light/non-drinking controls. These differences were no longer present 3 months later when the relapsers had resumed drinking. We found no significant differences between abstainers and controls at either timepoint. tests revealed that one eBRS region, the ventromedial PFC, showed a significant global across-community interaction with a community comprising the visual cortex in relapsers at baseline. In contrast, abstainers showed a significant negative association of the ventromedial PFC with the visual cortex. The increased across-community interaction of the ventromedial PFC and the visual cortex in relapsers at timepoint 1 may be an early indicator for treatment failure in a subgroup of AUD patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7758478PMC
http://dx.doi.org/10.3389/fpsyt.2020.536706DOI Listing

Publication Analysis

Top Keywords

visual cortex
16
across-community interaction
16
ventromedial pfc
16
global across-community
12
month abstinence
8
cortex relapsers
8
pfc visual
8
relapsers
5
over-connected visual
4
cortex
4

Similar Publications

The population receptive field (pRF) method, which measures the region in visual space that elicits a blood-oxygen-level-dependent (BOLD) signal in a voxel in retinotopic cortex, is a powerful tool for investigating the functional organization of human visual cortex with fMRI (Dumoulin & Wandell, 2008). However, recent work has shown that pRF estimates for early retinotopic visual areas can be biased and unreliable, especially for voxels representing the fovea. Here, we show that a log-bar stimulus that is logarithmically warped along the eccentricity dimension produces more reliable estimates of pRF size and location than the traditional moving bar stimulus.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Lawrence Chen Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.

Background: Abnormal tau protein accumulation selectively affects distinct brain regions and specific neuron and glia populations in tau-related dementias like Alzheimer's disease (AD), frontotemporal dementia (FTD, Pick's disease type), and Progressive supranuclear palsy (PSP). The regulatory mechanisms governing cell-type vulnerability remain unclear.

Method: In a cross-disorder single-nucleus analysis, we examined 663,896 nuclei, assessing chromatin accessibility in three brain regions (motor cortex, visual cortex and insular cortex) across PSP, AD, and FTD in 40 individuals.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have identified genetic polymorphisms of ABI3 as a risk factor for late-onset Alzheimer's Disease (LOAD), but the role of ABI3 in microglia is not well understood.
  • Using CRISPR/Cas9, a specific risk variant (S212F) was introduced into mouse models to study its effects on AD-related pathologies alongside 5xFAD mice over time.
  • Results showed that the 5xFAD/Abi3 mice exhibited a decrease in amyloid beta plaque burden and a significant reduction in microglia numbers with age, suggesting ABI3 may influence both plaque formation and microglial response in AD pathology.
View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is characterized by progressive, irreversible neurodegeneration, leading to memory loss and cognitive decline. In mouse models of AD, global decreases in cerebral blood flow (CBF) are brought on by the plugging of capillaries by arrested neutrophils, and the administration of the neutrophil-specific antibody against Ly6G (anti-Ly6G) reduces these capillary stalls in minutes and improves cognitive function within hours. This suggests that at least some aspects of neural activity impairment are reversible, but the mechanism of this recovery - and what specific neural activity is normalized - is not yet known.

View Article and Find Full Text PDF

Background: In Alzheimer's disease (AD), specific brain regions become vulnerable to pathology while others remain resilient. New methods of imaging such as highly multiplexed immunofluorescence (MxIF) provide an abundance of spatial information, while analytical techniques like machine learning (ML) can address questions of cellular contributors to this regional vulnerability.

Method: We performed MxIF staining for 26 markers and compared postmortem human samples from an AD-susceptible brain area, the prefrontal cortex (PFC, Brodmann's areas 9, 10 or 46) to an AD-resilient brain area, the primary visual cortex (V1, area 17).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!