Time-domain diffuse optical tomography (TD-DOT) uses near-infrared pulsed lasers as light sources to measure time-varying exitance on the boundary of the target. These are used to estimate optical properties of the imaged target. Several integral-transform-based moments of the time-resolved data have been utilized in TD-DOT, the most common being the mean time of flight and variance. Recently, it has been shown that Fourier transforming the time-domain data to frequency domain enables utilization of these data at one or several frequencies, producing equally as good estimates as the whole time-domain data. In this work, we present a systematic comparison of the usage of the temporal moments and Fourier transformed data in TD-DOT. Both absolute and difference imaging are evaluated using numerical simulations. The simulations show that utilizing temporal moments and Fourier transformed data in TD-DOT provides good quality reconstructions with a good estimation accuracy. These estimates are improved if more than one data type is used. Furthermore, the simulations show that the frequency-domain computations enable computationally cheaper and straightforward implementation of the inverse solver when compared to the temporal moments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/JOSAA.405541 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!