Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We show how novel photonic devices such as broadband quantum memory and efficient quantum frequency transduction can be implemented using three-wave mixing processes in a 1D array of nonlinear waveguides evanescently coupled to nearest neighbors. We do this using an analogy of an atom interacting with an external optical field using both classical and quantum models of the optical fields and adapting well-known coherent processes from atomic optics, such as electromagnetically induced transparency and stimulated Raman adiabatic passage to design. This approach allows the implementation of devices that are very difficult or impossible to implement by conventional techniques.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8892941 | PMC |
http://dx.doi.org/10.1364/OE.415480 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!