An optical parametric oscillator (OPO) is developed and characterized for the simultaneous generation of ultraviolet (UV) and near-UV nanosecond laser pulses for the single-shot Rayleigh scattering and planar laser-induced-fluorescence (PLIF) imaging of methylidyne (CH) and nitric oxide (NO) in turbulent flames. The OPO is pumped by a multichannel, 8-pulse Nd:YAG laser cluster that produces up to 225 mJ/pulse at 355 nm with pulse spacing of 100 µs. The pulsed OPO has a conversion efficiency of 9.6% to the signal wavelength of ∼430 when pumped by the multimode laser. Second harmonic conversion of the signal, with 3.8% efficiency, is used for the electronic excitation of the A-X (1,0) band of NO at ∼215, while the residual signal at 430 nm is used for direct excitation of the A-X (0,0) band of the CH radical and elastic Rayleigh scattering. The section of the OPO signal wavelength for simultaneous CH and NO PLIF imaging is performed with consideration of the pulse energy, interference from the reactant and product species, and the fluorescence signal intensity. The excitation wavelengths of 430.7 nm and 215.35 nm are studied in a laminar, premixed ---air flame. Single-shot CH and NO PLIF and Rayleigh scatter imaging is demonstrated in a turbulent -- diffusion flame using a high-speed intensified CMOS camera. Analysis of the complementary Rayleigh scattering and CH and NO PLIF enables identification and quantification of the high-temperature flame layers, the combustion product zones, and the fuel-jet core. Considerations for extension to simultaneous, 10-kHz-rate acquisition are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.406237DOI Listing

Publication Analysis

Top Keywords

rayleigh scattering
12
turbulent flames
8
optical parametric
8
parametric oscillator
8
plif imaging
8
signal wavelength
8
excitation a-x
8
a-x band
8
signal
5
planar laser-induced
4

Similar Publications

Extracellular vesicle (EV) monitoring can complement clinical assessment of cancer response. In this study, patients with advanced non-small cell lung cancer (NSCLC) undergoing osimertinib, alectinib, pembrolizumab or platinum-based chemotherapy ± pembrolizumab were enrolled. EVs were characterized using Bradford assay to quantify the circulating cell-free EV protein content (cfEV), and dynamic light scattering to assess Rayleigh ratio excess at 90°, z-averaged hydrodynamic diameter and polydispersity index.

View Article and Find Full Text PDF

Advancements in Raman light sheet microscopy have provided a powerful, non-invasive, marker-free method for imaging complex 3D biological structures, such as cell cultures and spheroids. By combining 3D tomograms made by Rayleigh scattering, Raman scattering, and fluorescence detection, this modality captures complementary spatial and molecular data, critical for biomedical research, histology, and drug discovery. Despite its capabilities, Raman light sheet microscopy faces inherent limitations, including low signal intensity, high noise levels, and restricted spatial resolution, which impede the visualization of fine subcellular structures.

View Article and Find Full Text PDF

Performance Analysis of Troposphere Scattering Communication Channel with Chirp-BOK Modulation.

Entropy (Basel)

December 2024

China Academy of Space Technology (Xi'an), Xi'an 710100, China.

By utilizing chirp-BOK (binary orthogonal keying) modulation into a troposphere scattering communication system, a lower demodulation threshold can be achieved with excellent linear frequency modulation properties in a strong noise and weak signal environment. Firstly, the bit error rate (BER) formula of chirp-BOK modulation over a Rayleigh fading channel was derived theoretically. Then, the BER performance with different chirp-BOK parameters were numerically calculated.

View Article and Find Full Text PDF

An optical biosensor is a specialized analytical device that utilizes the principles of optics and light in bimolecular processes. Localized surface plasmon resonance (LSPR) is a phenomenon in the realm of nanophotonics that occurs when metallic nanoparticles (NPs) or nanostructures interact with incident light. Conversely, surface-enhanced Raman spectroscopy (SERS) is an influential analytical technique based on Raman scattering, wherein it amplifies the Raman signals of molecules when they are situated near specific and specially designed nanostructures.

View Article and Find Full Text PDF

Engineering the acoustic field with a Mie scatterer for microparticle patterning.

Lab Chip

January 2025

Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.

The utilization of acoustic fields offers a contactless approach for microparticle manipulation in a miniaturized system, and plays a significant role in medicine, biology, chemistry, and engineering. Due to the acoustic radiation force arising from the scattering of the acoustic waves, small particles in the Rayleigh scattering range can be trapped, whilst their impact on the acoustic field is negligible. Manipulating larger particles in the Mie scattering regime is challenging due to the diverse scattering modes, which impacts the local acoustic field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!