The frequency characteristics of spherical photon density waves excited in media with different degrees of scattering anisotropy are studied. Statistical modeling of the frequency and phase responses of the spatial irradiance of the light field emitted by a point-sized isotropic source were performed employing the Monte Carlo technique. The scattering anisotropy of the medium was determined by the Henyey-Greenstein phase function with different values of the mean scattering cosine. It is shown that the scattering anisotropy factor determines the frequency range, in which the effect of the photon path length distribution on the magnitude of the photon density wave dispersion is maximal. In media with quasi-isotropic scattering, dispersion effects are manifested at lower frequencies as compared to those for anisotropic media. The simulation results are compared with the analytical solution for the asymptotic regime of the light field in an isotropically scattering medium.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.412093DOI Listing

Publication Analysis

Top Keywords

scattering anisotropy
16
photon density
12
density waves
8
light field
8
scattering
7
anisotropy properties
4
photon
4
properties photon
4
waves frequency
4
frequency characteristics
4

Similar Publications

The demand for medical imaging with reduced patient dosage and higher resolution is growing, driving the need for advanced X-ray detection technologies. This paper proposes a design paradigm for X-ray detection semiconductors by coupling constituent motifs through crystal structure engineering. The study introduces a strongly anisotropic Aurivillius-type quasi-2D perovskite structure, combining [BiO] groups with stereochemically active lone pair electrons (SCALPEs) and [W/MoO] anionic groups, enabling enhanced X-ray Compton scattering and self-powered capabilities through local electric field ordering.

View Article and Find Full Text PDF

Lattice thermal conductivity in CrSBr: the effects of interlayer interaction, magnetic ordering and external strain.

J Phys Condens Matter

January 2025

South China Normal University, School of Physics, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangzhou, 510631, CHINA.

With the continuous development of digital information and big data technologies, the ambient temperature and heat generation during the operation of magnetic storage devices play an increasingly crucial role in ensuring data security and device stability. In this study, we examined the lattice thermal conductivity of the van der Waals magnetic semiconductor CrSBr from bulk to monolayer structures using first-principles calculations and the phonon Boltzmann transport equation. Our results indicated that lattice thermal conductivity show anisotropy and CrSBr bilayer exhibits lower thermal conductivity at all temperatures.

View Article and Find Full Text PDF

The reactivation of heterotrimeric protein phosphatase 2A (PP2A) through small molecule activators is of interest to therapeutic intervention due to its dysregulation, which is linked to chronic conditions. This study focuses on the PP2A scaffold subunit PR65 and a small molecule activator, ATUX-8385, designed to bind directly to this subunit. Using a label-free single-molecule approach with nanoaperture optical tweezers (NOT), we quantify its binding, obtaining a dissociation constant of 13.

View Article and Find Full Text PDF

We here explore confinement-induced assembly of whey protein nanofibrils (PNFs) into microscale fibers using microfocused synchrotron X-ray scattering. Solvent evaporation aligns the PNFs into anisotropic fibers, and the process is followed in situ by scattering experiments within a droplet of PNF dispersion. We find an optimal temperature at which the order parameter of the protein fiber is maximized, suggesting that the degree of order results from a balance between the time scales of the forced alignment and the rotational diffusion of the fibrils.

View Article and Find Full Text PDF

Extreme Optical Chirality from Plasmonic Nanocrystals on a Mirror.

Nano Lett

January 2025

NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom.

Metal nanocrystals synthesized in achiral environments usually exhibit no chiroptical effects. However, by placing nominally achiral nanocrystals 1.3 nm above gold films, we find giant chiroptical effects, reaching anisotropy factors as high as ≈ 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!