AI Article Synopsis

Article Abstract

Optical imaging for non-self-luminous objects surrounded by complex scattering environments is scientifically challenging and technologically important. We propose a non-invasive imaging method by externally sending the illuminating light through the scattering medium and by detecting and analyzing the speckle patterns. The imaging of the object is recovered by extending the application scope of the Fourier-domain shower-curtain effect. It is found that the imaging depth is substantially extended and that faster imaging restoration is realized with the improved illumination scheme assisted with optical lenses, hence making it possible to apply the non-invasive optical imaging technique for practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.415181DOI Listing

Publication Analysis

Top Keywords

optical imaging
12
non-invasive optical
8
fourier-domain shower-curtain
8
imaging
7
imaging extension
4
extension fourier-domain
4
shower-curtain optical
4
imaging non-self-luminous
4
non-self-luminous objects
4
objects surrounded
4

Similar Publications

Twisted halide perovskite bilayers, a type of moiré material, show square moiré patterns with exciting optical properties. Atomic-scale structure analysis and its correlation with properties are difficult to achieve due to the extreme sensitivity of organic-inorganic halide perovskites to the illuminated electron beam in conventional/scanning transmission electron microscopy. Here, we developed a low-dose exit wave reconstruction methodology with a real-space resolution of one angstrom at ∼50 e/Å, which recovers the phase information on the moiré fringes in CHNHPbI (MAPbI) twisted perovskite bilayers at atomic scale, enabling detailed structural analysis of defects and corresponding strain distribution in such moiré materials.

View Article and Find Full Text PDF

Purpose: To identify optical coherence tomography (OCT)-based imaging biomarkers that can localize focal leakage points without fluorescein angiography in central serous chorioretinopathy (CSC).

Methods: This retrospective case-control study analyzed 119 consecutive patients (123 eyes) with CSC between April 2018 and February 2024, comprising 66 eyes with focal-leakage type and 57 eyes with diffuse-leakage type. We assessed leakage sites using OCT, and the proportions of OCT findings were compared between focal- and diffuse-leakage types.

View Article and Find Full Text PDF

Drusen Regression Following Macular Hole Surgery: A Case Report.

Retin Cases Brief Rep

January 2025

Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA.

Purpose: To report a case of drusen regression following pars plana vitrectomy with internal limiting membrane peel (ILMP) in a patient with a full-thickness macular hole and dry age-related macular degeneration (AMD).

Methods: A 67-year-old gentleman presented in April 2024 with a full-thickness macular hole in OS and intermediate dry AMD OU. The patient underwent pars plana vitrectomy, ILMP, and an injection of sulfur hexafluoride gas for macular hole repair in OS.

View Article and Find Full Text PDF

N-heterocyclic carbene (NHC)-protected gold nanoclusters display high stability and high photoluminescence, making them well-suited for fluorescence imaging and photodynamic therapeutic applications. We report herein the synthesis of two bisNHC-protected Au nanoclusters with π-extended aromatic systems. Depending on the position of the π-extended aromatic system, changes to the structure of the ligand shell in the cluster are observed, with the ability to correlate increases in rigidity with increases in fluorescence quantum yield.

View Article and Find Full Text PDF

Creating coveted bioluminescence colors for simultaneous multi-color bioimaging.

Sci Adv

January 2025

Department of Biomolecular Science and Engineering, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.

Bioluminescence, an optical marker that does not require excitation by light, allows researchers to simultaneously observe multiple targets, each exhibiting a different color. Notably, the colors of the bioluminescent proteins must sufficiently vary to enable simultaneous detection. Here, we aimed to introduce a method that can be used to expand the color variation by tuning dual-acceptor bioluminescence resonance energy transfer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!